EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动脉粥样硬化晚期斑块局部应力的流固耦合分析及体外反搏作用干预机制的研究

杜健航 王梁 伍贵富 郑振声 戴刚 冯铭哲

杜健航, 王梁, 伍贵富, 郑振声, 戴刚, 冯铭哲. 动脉粥样硬化晚期斑块局部应力的流固耦合分析及体外反搏作用干预机制的研究[J]. 力学学报, 2018, 50(1): 138-146. doi: 10.6052/0459-1879-17-150
引用本文: 杜健航, 王梁, 伍贵富, 郑振声, 戴刚, 冯铭哲. 动脉粥样硬化晚期斑块局部应力的流固耦合分析及体外反搏作用干预机制的研究[J]. 力学学报, 2018, 50(1): 138-146. doi: 10.6052/0459-1879-17-150
Du Jianhang, Wang Liang, Wu Guifu, Zheng Zhensheng, Dai Gang, Feng Mingzhe. FLUID-STRUCTURE INTERACTION ANALYSIS OF LOCAL STRESSES IN ATHEROSCLEROTIC PLAUQE AND THE INTERVENTION OF ENHANCED EXTERNAL COUNTERPULSATION TREATMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 138-146. doi: 10.6052/0459-1879-17-150
Citation: Du Jianhang, Wang Liang, Wu Guifu, Zheng Zhensheng, Dai Gang, Feng Mingzhe. FLUID-STRUCTURE INTERACTION ANALYSIS OF LOCAL STRESSES IN ATHEROSCLEROTIC PLAUQE AND THE INTERVENTION OF ENHANCED EXTERNAL COUNTERPULSATION TREATMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 138-146. doi: 10.6052/0459-1879-17-150

动脉粥样硬化晚期斑块局部应力的流固耦合分析及体外反搏作用干预机制的研究

doi: 10.6052/0459-1879-17-150
基金项目: 收稿: 2017-05-02,录用: 2017-12-29, 网络版发表: 2017-12-29.;卫生部临床学科重点专项 (254004);卫生部辅助循环重点实验室开放基金资助项目.
详细信息
    作者简介:

    *通讯作者:杜健航,副教授,主要研究方向:血管生物力学,心血管辅助循环和体外反搏. E-mail:zsudjhang@163.com

    通讯作者:

    杜健航

  • 中图分类号: O38;

FLUID-STRUCTURE INTERACTION ANALYSIS OF LOCAL STRESSES IN ATHEROSCLEROTIC PLAUQE AND THE INTERVENTION OF ENHANCED EXTERNAL COUNTERPULSATION TREATMENT

  • 摘要: 生物机械力被普遍认为在动脉粥样硬化晚期斑块进程及最终破裂中起着重要的作用. 本文的目的是研究血流灌注、动脉内压、斑块组织和材料特性等因素对斑块局部流动切应力 及斑块结构应力 水平的影响,同时评价临床中的非介入辅助循环疗法 —— 体外反搏 对斑块局部应力水平的干预作用. 采用结合猪动物模型在体测量及三维流固耦合数值仿真的研究方法. 结果显示,当斑块狭窄率一定时 (50%),斑块的流动切应力水平主要由血流灌注决定;而斑块结构应力主要取决于动脉内压及纤维帽 厚度. 只有在纤维帽足够薄的情况下,斑块的材料特性才对斑块结构应力有显著影响;当纤维帽最薄同时脂质池材料最软时,临界斑块壁面应力 因子达到极值的 257.72 kPa (正常生理状态) 及 300.20 kPa (体外反博状态). 由于最大壁面应力、临界斑块壁面应力 及全局最大斑块壁面应力 三个应力因子中,只有临界斑块壁面应力 明显受纤维帽厚度和脂质池材料特性的影响,因此 其可能与斑块进程的关联最为紧密. 此外,体外反博作用明显提高了晚期斑块的应力水平,这是否会给斑块进程及重构带来慢性的影响,需要作更深入的研究.

     

  • [1] Mozaffarian D, Benjamin EJ, Go AS, et al.Heart disease and stroke statistics---2016 Update.Circulation, 2016, 133(4): e38-e360
    [2] Teng ZZ, Brown AJ, Gillard JH.From ultrasonography to high resolution magnetic resonance imaging: Towards an optimal management strategy for vulnerable carotid atherosclerotic plaques.Ebiomedicine, 2016, 3: 2-3
    [3] Teng ZZ, Zhang YX, Huang Y, et al.Material properties of components in human carotid atherosclerotic plaques: A uniaxial extension study.Acta Biomaterialia, 2014, 10(12): 5055-5063
    [4] Tang DL, Kamm RD, Yang C, et al.Image-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: Data, modeling, validation, uncertainty and predictions.Journal of Biomechanics, 2014, 47: 834-846
    [5] Huang XY, Yang C, Zheng J, et al.Higher critical plaque wall stress in patients who died of coronary artery disease compared with those who died of other causes: A 3D FSI study based on ex vivo MRI of coronary plaques.Journal of Biomechanics, 2014, 47(2): 432-437
    [6] Sadat U, Teng Z, Gillard JH.Biomechanical structural stresses of atherosclerotic plaques.Expert Review of Cardiovascular Therapy, 2014, 8(10): 1469-1481
    [7] Teng Z, Sadat U, Brown AJ, et al.Plaque hemorrhage in carotid artery disease: Pathogenesis, clinical and biomechanical considerations.Journal of Biomechanics, 2014, 47(4): 847-858
    [8] Gijsen FJH.Plaque mechanics.Journal of Biomechanics, 2014, 47: 763-764
    [9] Tang DL, Li ZY, Gijsen F, et al.Cardiovascular diseases and vulnerable plaques: Data, modeling, predictions and clinical applications.BioMedical Engineering OnLine, 2015, 14(1): 1-7
    [10] Assemat P, Armitage JA, Siu KK, et al.Three-dimensional numerical simulation of blood flow in mouse aortic arch around atherosclerotic plaques.Applied Mathematical Modelling, 2014 (17-18): 4175-4185
    [11] Gijsen FJH, Van dGA, Van dSA, et al. Shear stress and advanced atherosclerosis in human coronary arteries.Journal of Biomechanics, 2012, 46(2): 240-247
    [12] Samady H, Eshtehardi P, Mcdaniel MC, et al.Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease.Circulation, 2011, 124(7): 779-788
    [13] 刘赵淼, 南斯琦, 史艺. 中等严重程度冠状动脉病变模型的血流动力学参数分析. 力学学报, 2015, 47(6): 1058-1064
    [13] Liu Zhaomiao, Nan Siqi, Shi Yi.Hemodynamic parameters analysis for coronary artery stenosis of intermediate severity model.Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1058-1064 (in Chinese)
    [14] Teng Z, Canton G, Yuan C, et al.3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: An in vivo MRI-based 3D FSI study.Journal of Biomechanical Engineering, 2010, 132(3): 031007
    [15] Douglas GR, Brown AJ, Gillard JH, et al.Impact of fiber structure on the material stability and rupture mechanisms of coronary atherosclerotic plaques.Annals of Biomedical Engineering, 2017, 45(6): 1462-1474
    [16] Richardson PD, Davies MJ, Born GV.Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques.Lancet, 1989, 2(8669): 941
    [17] Brown AJ, Teng Z, Evans PC, et al.Role of biomechanical forces in the natural history of coronary atherosclerosis.Nature Reviews Cardiology, 2016, 13(4): 210
    [18] William SD, Lam Y, Younis HF, et al.On the sensitivity of wall stresses in diseased arteries to variable material properties.Journal of Biomechanical Engineering, 2003, 125: 147-155
    [19] Ohayon J, Finet G, Gharib AM, et al.Necrotic core thickness and positive arterial remodeling index: Emergent biomechanical factors for evaluating the risk of plaque rupture.American Journal of Physiology. Heart and circulatory physiology, 2008, 295(2): H717
    [20] Fihn SD, Blankenship JC, Alexander KP, et al.2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease.Journal of Thoracic and Cardiovascular Surgery, 2015, 149(3): e5-e23
    [21] Task Force Members, Gilles Montalescot, Udo Sechtem, et al.2013 ESC guidelines on the management of stable coronary artery disease.European Heart Journal, 2013, 34(38): 2949
    [22] Jauch EC, Saver JL, Adams HP, et al.Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke, 2013, 44(3): 870
    [23] Zhang Y, He XH, Chen XL, et al.Enhanced external counterpulsation inhibits intimal hyperplasia by modifying shear stress responsive gene expression in hypercholesterolemic pigs.Circulation, 2007, 116: 526-544
    [24] Braith RW, Conti CR, Nichols WW, et al.Enhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina: A randomized sham-controlled study.Circulation, 2010, 122(16): 1612-1620
    [25] Raza A, Steinberg K, Tartaglia J, et al.Enhanced external counterpulsation therapy: Past, present, and the future.Cardiology in Review, 2016, 25(2): 59-67
    [26] Du J, Wang L.Enhanced external counterpulsation treatment may intervene the advanced atherosclerotic plaque progression by inducing the variations of mechanical factors: A 3D FSI study based on in vivo animal experiment.Molecular & Cellular Biomechanics, 2015, 12(4): 249-263
    [27] Du JH, Wu GF, Zheng ZS, et al.Enhanced external counterpulsation treatment inhibitting advanced atherosclerotic plaque progression by augmenting the plaque wall stress: An in vivo FSI study based on animal experiment.Chinese Journal of Biomedical Engineering, 2016, 25(1): 1-11
    [28] Lin W, Xiong L, Han J, et al.External counterpulsation augments blood pressure and cerebral flow velocities in ischemic stroke patients with cerebral intracranial large artery occlusive disease.Stroke, 2012, 43: 3007-3011
    [29] Yuan JM, Teng ZZ, Feng JX, et al.Influence of material property variability on the mechanical behavior of carotid atherosclerotic plaques: A 3D fluid-structure interaction analysis.International Journal for Numerical Methods in Biomedical Engineering, 2015, 31(8): e02722
    [30] Wang Q, Canton G, Guo J, et al.MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up.Plos One, 2017, 12(7): e0180829
    [31] Versluis A, Bank AJ, Douglas WH.Fatigue and plaque rupture in myocardial infarction.Journal of Biomechanics, 2006, 39(2): 339-347
  • 加载中
计量
  • 文章访问数:  1194
  • HTML全文浏览量:  93
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 刊出日期:  2018-01-18

目录

    /

    返回文章
    返回