SHEAR RESPONSE OF GRAIN BOUNDARIES WITH HYDROGEN DEFECTS
-
摘要: 针对4个α-Fe对称倾斜晶界,采用分子静力学考察了4个晶界中H原子偏析能的分布特征,并采用分子动力学方法研究了晶界内植入不同数量H原子对其在室温条件下剪切行为的影响。H原子通过随机方式植入界面内,利用植入H原子数量与晶界面积的比值来定义H原子面密度ρ。在含H原子晶界剪切行为分析过程中,重点考察了在不同H原子密度ρ下,4个晶界的初始塑性临界应力和晶界迁移位移的变化趋势以及4个晶界在加载过程中的微观变形机理。研究表明:晶界内的H原子偏析能明显偏低,4个晶界附近的H原子会自发向晶界内偏析;随着植入H原子数量的逐渐增多,晶界的初始塑性临界应力和后续变形阶段应力均会降低。晶界内植入H原子会从本质上改变晶界的微观变形机理,进而影响晶界在外载荷条件下的迁移属性。与不含H原子晶界的变形机理对比发现,加载过程中晶界的微结构会发生剧烈的演化,H原子的扩散和团簇化效应会导致晶界内出现纳米孔缺陷。Abstract: The segregation energy distributions of hydrogen in four α-Fe symmetric tilt grain boundaries (GBs) are analyzed by using molecular statics (MS), and then the shear responses of four GBs embedded with different number of hydrogen atoms at the room temperature are investigated by using molecular dynamics (MD) methods. To facilitate our quantitative analysis, the hydrogen density ρ is defined as the ratio between the number of hydrogen atoms and the GB area. At different hydrogen densities, the variations of initial critical stress of GB plasticity and GB migration displacements are analyzed, and the micro-deformation mechanisms in each GB with the presence of hydrogen atoms are analyzed as well. It is found that the hydrogen segregation energies are generally lower in GB than those inside grain, which lead four GBs to absorb hydrogen atoms in the vicinity of GBs. With the increase of hydrogen density ρ the critical stress of incipient plasticity as well as the flow stress could be reduced. Moreover, the micro-deformation mechanisms of fours GBs with hydrogen atoms are different from those of GBs without hydrogen atoms. In particular, presence of hydrogen atoms remarkably affects GB migration velocity. Thus, GB with hydrogen atoms may undergo a pure sliding deformation instead of the shear-coupling deformation for GB without hydrogen atoms. Meanwhile, in contrast to GBs without hydrogen atoms, the micro-structures of GB with hydrogen atoms drastically evolve upon loading. In addition, the diffusion and agglomeration of hydrogen atoms may lead to the formation of nanovoid in GBs.
-
Key words:
- grain boundary /
- hydrogen /
- segregation energy /
- shear behavior
-
表 1 晶界的几何和物理参数
Table 1. The geometrical and physical properties of four GBs
表 2 每个晶界中植入的H原子密度对应的H原子数量$N^{\rm H}$
Table 2. The number of hydrogen atoms placed in each GB for a specified hydrogen density
-
[1] Johnson WH. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proceedings of the Royal Society of London, 1874, 23:168-179 doi: 10.1098/rspl.1874.0024 [2] 南雲道彦.钢的氢脆的新研究方向.热处理, 2010, 25(3):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-RACL201003004.htmMichihiko Nagumo. Turning of the research direction on hydrogen embrittlement of steel. Heat Treatment, 2010, 25(3):1-6 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-RACL201003004.htm [3] 罗洁, 郭正洪, 戎咏华.先进高强度钢氢脆的研究进展.机械工程材料, 2015, 39(8):1-9 doi: 10.11973/jxgccl201508001Luo Jie, Guo Zhenghong, Rong Yonghua. Research progess on hydrogen embrittlement in advanced high strength steels. Materials for Mechanical Engineering, 2015, 39(8):1-9 (in Chinese) doi: 10.11973/jxgccl201508001 [4] Nagumo M. Characteristic features of deformation and fracture in hydrogen embrittlement//Fundamentals of Hydrogen Embrittlement, Springer Singapore, Singapore, 2016, 137-165 [5] 宋仁国, 张宝金, 曾梅光.高强铝合金晶界偏析与氢致断裂机理的研究.航空材料学报, 1997, 17(1):31-38 http://www.cnki.com.cn/Article/CJFDTOTAL-HKCB199701004.htmSong Renguo, Zhang Baojin, Zeng Meiguang. The research on the hydrogen segregation and hydrogen induced fracture mechanisms in high strength Al alloy. Journal of Aeronautical Materials, 1997, 17(1):31-38 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HKCB199701004.htm [6] 张立文, 刘宝璋, 哈宽富. α-Fe中氢致裂纹的研究.材料科学进展, 1988, 2(5):44-49 http://www.cnki.com.cn/Article/CJFDTOTAL-CYJB198805006.htmZhang Liwen, Liu Baozhang, Ha Kuanfu. Hydrogen cracking in α-Fe. Progess in Material Science, 1988, 2(5):44-49 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-CYJB198805006.htm [7] Neeraj T, Srinivasan R, Li J. Hydrogen embrittlement of ferritic steels:Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding. Acta Materialia, 2012, 60(13-14):5160-5171 doi: 10.1016/j.actamat.2012.06.014 [8] Sanchez J, Lee SF, Martin-Rengel MA, et al. Measurement of hydrogen and embrittlement of high strength steels. Engineering Failure Analysis, 2016, 59:467-477 doi: 10.1016/j.engfailanal.2015.11.001 [9] Demetriou V, Robson JD, Preuss M, et al. Study of the effect of hydrogen charging on the tensile properties and microstructure of four variant heat treatments of nickel alloy 718. International Journal of Hydrogen Energy, 2017 ( http://doi.org/10.1016/j.ijhydene.2017.02.149) [10] Martin ML, Robertson IM, Sofronis P. Interpreting hydrogeninduced fracture surfaces in terms of deformation processes:A new approach. Acta Materialia, 2011, 59(9):3680-3687 doi: 10.1016/j.actamat.2011.03.002 [11] Nagao A, Smith CD, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel. Acta Materialia, 2012, 60(13-14):5182-5189 doi: 10.1016/j.actamat.2012.06.040 [12] Xing X, Chen W, Zhang H. Prediction of crack propagation under cyclic loading based on hydrogen diffusion. Materials Letters, 2015, 152:86 -89 doi: 10.1016/j.matlet.2015.03.045 [13] Abraham DP, Altstetter CJ. Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metallurgical and Materials Transactions A, 1995, 26(11):2859-2871 doi: 10.1007/BF02669644 [14] 张建, 李秀艳, 赵明久等.晶界相对Fe-Ni-Cr奥氏体合金氢脆的影响.金属学报, 2008, 44(9):1095-1098 http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200809015.htmZhang Jian, Li Xiuyan, Zhao Mingjiu, et al. Effects of grain boundary phases on hydrogen embrittlement of Fe-Ni-Cr austenitic alloys. Acta Metallurgica Sinica, 2008, 44(9):1095-1098 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200809015.htm [15] 陈业新.金属间化合物的环境氢脆.上海大学学报(自然科学版), 2011, 17(4):487-502 http://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201104019.htmChen Yexin. Environmental hydrogen embrittlement of intermetallics. Journal of Shanghai University (Natural Science Edition), 2011, 17(4):487-502 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201104019.htm [16] 吴友义, 卞欢, 毛彩云等.纳晶金属材料氢脆的微观力学模型.工程力学, 2014, 31(12):228-233 http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201412033.htmWu Youyi, Bian Huan, Mao Caiyun, et al. A micro-mechanical model of hydrogen-induced embrittlement in nanocrystalline metals. Engineering Mechanics, 2014, 31(12):228-233 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201412033.htm [17] Tehranchi A, Curtin WA. Atomistic study of hydrogen embrittlement of grain boundaries in nickel:I. Fracture. Journal of the Mechanics and Physics of Solids, 2017, 101:150-165 doi: 10.1016/j.jmps.2017.01.020 [18] Xing X, Chen W, Zhang H. Atomistic study of hydrogen embrittlement during cyclic loading:Quantitative model of hydrogen accumulation effects. International Journal of Hydrogen Energy, 2017, 42(7):4571-4578 doi: 10.1016/j.ijhydene.2016.12.127 [19] Tehranchi A, Yin B, Curtin WA. Softening and hardening of yield stress by hydrogen-solute interactions. Philosophical Magazine, 2017, 97(6):400-418 doi: 10.1080/14786435.2016.1263402 [20] Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nature Materials, 2013, 12(2):145-151 [21] 何昱辰, 刘向军.基于粗粒化水分子模型的Cu-H2O纳米流体黏度模拟.力学学报, 2014, 46(6):871-878 doi: 10.6052/0459-1879-14-087He Yuchen, Liu Xiangjun. Simulation studies of viscosities of Cu-H2O nanofluids based on coarse graining water molecules. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6):871-878 (in Chinese) doi: 10.6052/0459-1879-14-087 [22] 刘海, 李启楷, 何远航.高速冲击压缩梯恩梯的分子动力学模拟.力学学报, 2015, 47(1):174-179 doi: 10.6052/0459-1879-14-141Liu Hai, Li Qikai, He Yuanhang. Molecular dynamics simulations of high velocity shock compressed TNT. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1):174-180 (in Chinese) doi: 10.6052/0459-1879-14-141 [23] 华军, 候燕, 段志荣等.石墨烯辐照损伤及力学性能研究.力学学报, 2016, 48(5):1080-1087 http://lxxb.cstam.org.cn/CN/abstract/abstract146006.shtmlHua Jun, Hou Yan, Duan Zhirong, et al. Study on irradiation damage and mechanical property of graphene. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5):1080-1087 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract146006.shtml [24] Fernandez N, Ferro Y, Kato D. Hydrogen diffusion and vacancies formation in tungsten:Density functional theory calculations and statistical models. Acta Materialia, 2015, 94:307-318 doi: 10.1016/j.actamat.2015.04.052 [25] Solanki KN, Tschopp MA, Bhatia MA, et al. Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-Fe. Metallurgical and Materials Transactions A, 2013, 44(3):1365-1375 doi: 10.1007/s11661-012-1430-z [26] Bhatia MA, Groh S, Solanki KN. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron. Journal of Applied Physics, 2014, 116(6):064302 doi: 10.1063/1.4892630 [27] Ismer L, Park MS, Janotti A, et al. Interactions between hydrogen impurities and vacancies in Mg and Al:A comparative analysis based on density functional theory. Physical Review B, 2009, 80(18):184110 doi: 10.1103/PhysRevB.80.184110 [28] Jiang B, Wan FR, Geng WT. Strong hydrogen trapping at helium in tungsten:Density functional theory calculations. Physical Review B, 2010, 81(13):134112 doi: 10.1103/PhysRevB.81.134112 [29] Fu CL, Painter GS. First principles investigation of hydrogen embrittlement in FeAl. Journal of Materials Research, 1991, 6(4):719-723 doi: 10.1557/JMR.1991.0719 [30] Jiang DE, Carter EA. First principles assessment of ideal fracture energies of materials with mobile impurities:implications for hydrogen embrittlement of metals. Acta Materialia, 2004, 52(16):4801-4807 doi: 10.1016/j.actamat.2004.06.037 [31] Serebrinsky S, Carter EA, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement. Journal of the Mechanics and Physics of Solids, 2004, 52(10):2403-2430 doi: 10.1016/j.jmps.2004.02.010 [32] Song J, Curtin WA. A nanoscale mechanism of hydrogen embrittlement in metals. Acta Materialia, 2011, 59(4):1557-1569 doi: 10.1016/j.actamat.2010.11.019 [33] Zhou X, Ouyang B, Curtin WA, et al. Atomistic investigation of the influence of hydrogen on dislocation nucleation during nanoindentation in Ni and Pd. Acta Materialia, 2016, 116:364-369 doi: 10.1016/j.actamat.2016.06.061 [34] Tabata T, Birnbaum HK. Direct observations of the effect of hydrogen on the behavior of dislocations in iron. Scripta Metallurgica, 1983, 17(7):947-950 doi: 10.1016/0036-9748(83)90268-5 [35] Eberhart ME, Johnson KH, Latanision RM. A molecular orbital model of intergranular embrittlement. Acta Metallurgica, 1984, 32(6):955-959 doi: 10.1016/0001-6160(84)90033-6 [36] Robertson IM, Tabata T, Wei W, et al. Hydrogen embrittlement and grain boundary fracture. Scripta Metallurgica, 1984, 18(8):841-846 doi: 10.1016/0036-9748(84)90407-1 [37] Rice JR, Wang JS. Embrittlement of interfaces by solute segregation. Materials Science and Engineering:A, 1989, 107(89):23-40 https://www.researchgate.net/publication/222987385_Embrittlement_of_interfaces_by_solute_segregation [38] Martin ML, Somerday BP, Ritchie RO, et al. Hydrogen-induced intergranular failure in nickel revisited. Acta Materialia, 2012, 60(6-7):2739-2745 doi: 10.1016/j.actamat.2012.01.040 [39] Spearot DE, Tschopp MA, Jacob KI, et al. Tensile strength of h100i and <110>tilt bicrystal copper interfaces. Acta Materialia, 2007, 55(2):705-714 doi: 10.1016/j.actamat.2006.08.060 [40] Tschopp MA, McDowell DL. Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper. Applied Physics Letters, 2007, 90(12):121916 doi: 10.1063/1.2715137 [41] Tschopp MA, McDowell DL. Dislocation nucleation in sigma 3 asymmetric tilt grain boundaries. International Journal of Plasticity, 2008, 24:191-217 doi: 10.1016/j.ijplas.2007.02.010 [42] 卢磊, 陈先华, 黄晓旭等.纳米孪晶纯铜的极值强度及纳米孪晶提高金属材料综合强韧性.中国基础科学, 2010, 12(1):16-18 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201001006.htmLu Lei, Chen Xianhua, Huang Xiaoxu, et al. Revealing the maximum strength in nanotwinned copper. China Basis Science, 2010, 12(1):16-18 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201001006.htm [43] 魏宇杰.纳米金属材料的界面力学行为研究.金属学报, 2014, 50(2):183-190 http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201402007.htmWei Yujie. Investigation of mechanical behavior of interfaces in nanostructured metals. Acta Metallurgica Sinica, 2014, 50(2):183-190 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201402007.htm [44] Cahn JW, Mishin Y, Suzuki A. Coupling grain boundary motion to shear deformation. Acta Materialia, 2006, 54(19):4953-4975. doi: 10.1016/j.actamat.2006.08.004 [45] Yu WS, Demkowicz MJ. Non-coherent Cu grain boundaries driven by continuous vacancy loading. Journal of Materials Science, 2015, 50(11):4047-4065 doi: 10.1007/s10853-015-8961-9 [46] Yu WS, Shen SP, Liu QF. Energetics of point defect interacting with bi-crystal Σ3 copper grain boundaries. Computational Materials Science, 2016, 118:47-55 doi: 10.1016/j.commatsci.2016.02.038 [47] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1):1-19 doi: 10.1006/jcph.1995.1039 [48] Alexander S. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1):015012 doi: 10.1088/0965-0393/18/1/015012 [49] Daw MS, Baskes MI. Embedded-atom method derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29:6443-6453 doi: 10.1103/PhysRevB.29.6443 [50] Daw MS, Foiles SM, Baskes MI. The embedded-atom method:a review of theory and applications. Materials Science Reports, 1993, 9:251-310 doi: 10.1016/0920-2307(93)90001-U [51] Ackland GJ, Mendelev MI, Srolovitz DJ, et al. Development of an interatomic potential for phosphorus impurities in α-iron. Journal of Physics:Condensed Matter, 2004, 16:S2629 doi: 10.1088/0953-8984/16/27/003 [52] Ramasubramaniam A, Itakura M, Carter EA. Interatomic potentials for hydrogen in α iron based on density functional theory. Physical Review B, 2009, 79:174101 doi: 10.1103/PhysRevB.79.174101 [53] Tschopp MA, McDowell DL. Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium. Philosophical Magazine, 2007, 87:3147-3173 doi: 10.1080/14786430701255895 [54] Tschopp MA, McDowell DL. Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philosophical Magazine, 2007, 87:3871-3892 doi: 10.1080/14786430701455321 [55] Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 1994, 2:279-286 doi: 10.1016/0927-0256(94)90109-0 [56] Nose S. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81:511-519 doi: 10.1063/1.447334 [57] Hoover WG. Canonical dynamic equilibrium phase-space distributions. Physical Review A, 1985, 31:1695-1697 doi: 10.1103/PhysRevA.31.1695 [58] Tschopp MA, Solanki KN, Baskes MI, et al. Generalized framework for interatomic potential design:Application to Fe-He system. Journal of Nuclear Materials, 2012, 425:22-32 doi: 10.1016/j.jnucmat.2011.08.003 [59] Rycroft CH, Grest GS, Landry JW, et al. Analysis of granular flow in a pebble-bed nuclear reactor. Physical Review E, 2006, 74:021306 doi: 10.1103/PhysRevE.74.021306 [60] Ivanov VA, Mishin Y. Dynamics of grain boundary motion coupled to shear deformation:An analytical model and its verification by molecular dynamics. Physical Review B, 2008, 78:064106 doi: 10.1103/PhysRevB.78.064106 -