[1] |
宋晓阳, 及春宁, 许栋.明渠湍流边界层中颗粒的运动及分布.力学学报, 2015, 47(2):231-241 doi: 10.6052/0459-1879-14-164Song Xiaoyang, Ji Chunning, Xu Dong. Distribution and motion of particles in the turbulent boundary layer of channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):231-241 (in Chinese) doi: 10.6052/0459-1879-14-164
|
[2] |
丁珏, 李家骅, 邱骁等.蒙特卡洛方法数值研究大气颗粒物动力学效应和辐射传输性质.力学学报, 2016, 48(3):557-565 http://lxxb.cstam.org.cn/CN/abstract/abstract145833.shtmlDing Jue, Li Jiahua, Qiu Xiao, et al. Numerical study on dynamics effect and rediation transfer characteristics of atmospheric particle by Monte Carlo method. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):557-565 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145833.shtml
|
[3] |
王帅, 于文浩, 陈巨辉等.鼓泡流化床中流动特性的多尺度数值模拟.力学学报, 2016, 48(3):585-592 http://lxxb.cstam.org.cn/CN/abstract/abstract145781.shtmlWang Shuai, Yu Wenhao, Chen Juhui, et al. Multi-scale simulation on hydrodynamic characteristics in bubbling fluidized bed. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):585-592 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145781.shtml
|
[4] |
D'Avino G, Maffettone PL. Particle dynamics in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2015, 215:80-104 doi: 10.1016/j.jnnfm.2014.09.014
|
[5] |
Chhabra RP. Bubbles, Drops and Particles in Non-Newtonian Fluids. New York:Taylor & Francis Group, 2007
|
[6] |
Di Carlo D, Irimia D, Tompkins RG, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 2007, 104 (48):18892-18897 doi: 10.1073/pnas.0704958104
|
[7] |
Leshansky A, Bransky A, Korin N, et al. Tunable nonlinear viscoelastic "focusing" in a microfluidic device. Phys Rev Lett, 2007, 98(23):234501 doi: 10.1103/PhysRevLett.98.234501
|
[8] |
Yang S, Kim JY, Lee SJ, et al. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip, 2011, 11(2):266-273 doi: 10.1039/C0LC00102C
|
[9] |
Karimi A, Yazdi S, Ardekani AM. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluids, 2013, 7(2):021501 doi: 10.1063/1.4799787
|
[10] |
Lim EJ, Ober TJ, Edd JF, et al. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nature Communications, 2014, 5:4120 http://people.seas.harvard.edu/~tober/Publications_files/TJO9.pdf
|
[11] |
Liu C, Xue C, Chen X, Shan L, et al. Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Analytical Chemistry, 2015, 87(12):6041-6048 doi: 10.1021/acs.analchem.5b00516
|
[12] |
Villone MM, Avino GD', Hulsen MA, et al. Particle motion in square channel flow of a viscoelastic liquid:migration vs. secondary flows. Journal of Non-Newtonian Fluid Mechanics, 2013, 195:1-8 doi: 10.1016/j.jnnfm.2012.12.006
|
[13] |
Li G, McKinley GH, Ardekani AM. Dynamics of particle migration in channel flow of viscoelastic fluids. Journal of Fluid Mechanics, 2015, 785:486-505 doi: 10.1017/jfm.2015.619
|
[14] |
Riddle MJC, Narvaez C, Bird RB. Interactions between two spheres falling along their line of centers in a viscoelastic fluid. Journal Non-Newtonian Fluid Mechanics, 1977, 2(17):23-35 http://www.academia.edu/10573503/Interactions_between_two_spheres_falling_along_their_line_of_centers_in_a_viscoelastic_fluid
|
[15] |
Daugan S, Talini L, Herzhaft B, et al. Aggregation of particles settling in shear-thinning fluids. Part 1. Two-particle aggregation. The European Physical Journal E, 2002, 7(1):55 https://www.researchgate.net/publication/237430629_Aggregation_of_particles_settling_in_shear-thinning_fluids_Part_1_Two-particle_aggregation
|
[16] |
Joseph DD, Liu YJ, Poletto M, et al. Aggregation and dispersion of spheres falling in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 1994, 54(6):45-86 https://www.researchgate.net/publication/222439800_Aggregation_and_dispersion_of_spheres_falling_in_viscoelastic_liquids
|
[17] |
Gheissary G, van den Brule BHAA. Unexpected phenomena observed in particle settling in non-Newtonian media. Journal of NonNewtonian Fluid Mechanics, 1996, 67(1):1-18 https://www.researchgate.net/publication/223679532_Unexpected_phenomena_observed_in_particle_settling_in_non-Newtonian_media
|
[18] |
Bobroff S, Phillips R. Nuclear magnetic resonance imaging investigation of sedimentation of concentrated suspensions in nonNewtonian fluids. Journal of Rheology, 1998, 42(1-2):1419-1436 https://www.researchgate.net/publication/243529792_Nuclear_magnetic_imaging_investigation_of_sedimentation_of_concentrated_suspensions_in_non-Newtonian_fluids
|
[19] |
Daugan S, Talini L, Herzhaft B, et al. Sedimentation of suspensions in shear-thinning fluids. Oil & Gas Science Technology, 2004, 59(1):71-80 https://www.researchgate.net/publication/241350216_Sedimentation_of_Suspensions_in_Shear-Thinning_Fluids
|
[20] |
Yu ZS, Phan-Thien N, Fan Y, et al. Viscoelastic mobility problem of a system of particles. Journal of Non-Newtonian Fluid Mechanics, 2002, 104:87-124 doi: 10.1016/S0377-0257(02)00014-9
|
[21] |
Yu ZS, Wachs A, Peysson Y. Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method. Journal of Non-Newtonian Fluid Mechanics, 2006, 136(2-3):126-139 doi: 10.1016/j.jnnfm.2006.03.015
|
[22] |
Vaia R, Giannelis EP. Polymer nanocomposites:status and opportunities. MRS Bull, 2001, 26(5):394-401 doi: 10.1557/mrs2001.93
|
[23] |
Sun X, Tabakman SM, Seo WS, et al. Separation of nanoparticles in a density gradient:FeCo@C and gold nanocrystals. Angewandte Chemie International Edition Engl, 2009, 48(5):939-942 doi: 10.1002/anie.v48:5
|
[24] |
Hao J, Pan TW, Glowinski R, et al. A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids:a positive definiteness preserving approach. Journal of NonNewton Fluid Mechanics, 2009, 156(1):95-111 https://www.researchgate.net/publication/223099193_A_fictitious_domaindistributed_Lagrange_multiplier_method_for_the_particulate_flow_of_Oldroyd-B_fluids_A_positive_definiteness_preserving_approach
|
[25] |
Surendra Balaji Devarakonda, Han J, Ahn CH, et al. Bioparticle separation in non-Newtonian fluid using pulsed flow in micro-channels. Microfluidics and Nanofluidics, 2007, 3(4):391-401 doi: 10.1007/s10404-006-0131-6
|
[26] |
Michele J, Padzold R, Donis R. Alignment and aggregation effects in suspensions of spheres in non-Newtonian media. Rheologica Acta, 1977, 16(3):317-321 doi: 10.1007/BF01523742
|
[27] |
Giesekus H. Particle movement in flows of non-Newtonian fluids. Z Angew Math Mechanics, 1978, 58:T26-T37
|
[28] |
Van Loon S, Fransaer J, Clasen C, et al. String formation in sheared suspensions in rheologically complex media:the essential role of shear thinning. Journal of Rheology, 2014, 58(1):237-254 doi: 10.1122/1.4853455
|
[29] |
Feng J, Huang PY, Joseph DD. Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid. Journal of Non-Newtonian Fluid Mechanics, 1996, 63(1):63-88 doi: 10.1016/0377-0257(95)01412-8
|
[30] |
Won D, Kim C. Alignment and aggregation of spherical particles in viscoelastic fluid under shear flow. Journal of Non-Newtonian Fluid Mechanics, 2004, 117(2-3):141-146 doi: 10.1016/j.jnnfm.2004.01.005
|
[31] |
Pasquino R, D'Avino G, Maffettone PL, et al. Migration and chaining of noncolloidal spheres suspended in a sheared viscoelastic medium. Experiments and numerical simulations. Journal of NonNewtonian Fluid Mechanics, 2014, 203:1-8 doi: 10.1016/j.jnnfm.2013.10.006
|
[32] |
Pasquino R, Snijkers F, Grizzuti N, et al. Directed self-assembly of spheres into a two-dimensional colloidal crystal by viscoelastic stresses. Langmuir, 2010, 26(5):3016-3019 doi: 10.1021/la904775c
|
[33] |
Pasquino R, Snijkers F, Grizzuti N, et al. The effect of particle size and migration on the formation of flow-induced structures in viscoelastic suspensions. Rheologica Acta, 2010, 49(10):993-1001 doi: 10.1007/s00397-010-0466-5
|
[34] |
Pasquino R, Panariello D, Grizzuti N. Migration and alignment of spherical particles in sheared viscoelastic suspensions. A quantitative determination of the flow-induced self-assembly kinetics. Journal of Colloid Interface Science, 2013, 394(4):49-54 https://www.researchgate.net/publication/233983504_Migration_and_alignment_of_spherical_particles_in_sheared_viscoelastic_suspensions_A_quantitative_determination_of_the_flow-induced_self-assembly_kinetics
|
[35] |
Nie DM, Lin JZ. Behavior of three circular particles in a confined power-law fluid under shear. Journal of Non-Newtonian Fluid Mechanics, 2015, 221:76-94 doi: 10.1016/j.jnnfm.2015.04.004
|
[36] |
Van Loon S, Fransaer J, Clasen C, et al. String formation in sheared suspensions in rheologically complex media:the essential role of shear thinning. Journal of Rheol, 2014, 58(1):237-254 doi: 10.1122/1.4853455
|
[37] |
Hwang W, Hulsen MA. Structure formation of non-colloidal particles in viscoelastic fluids subjected to simple shear flow. Macromolecular Materials & Engineering, 2011, 296(3-4):321-330 https://www.researchgate.net/publication/228046397_Structure_Formation_of_Non-Colloidal_Particles_in_Viscoelastic_Fluids_Subjected_to_Simple_Shear_Flow
|
[38] |
Jaensson NO, Hulsena MA, Anderson PD. Simulations of the startup of shear flow of 2D particle suspensions in viscoelastic fluids:structure formation and rheology. Journal of Non-Newtonian Fluid Mechanics, 2015, 225:70-85 doi: 10.1016/j.jnnfm.2015.09.006
|
[39] |
Kazi SN, Duffy GG, Chen XD. Validation of heat transfer and friction loss data for fibre suspensions in a circular and a coaxial pipe heat exchanger. International Journal of Thermal Sciences, 2014, 79(4):146-160 https://www.researchgate.net/profile/G_Duffy2/publication/260212861_Validation_of_heat_transfer_and_friction_loss_data_for_fibre_suspensions_in_a_circular_and_a_coaxial_pipe_heat_exchanger/links/0deec531164ee9202e000000.pdf
|
[40] |
Lin JZ, Xia Y, Ku XK. Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow. International Journal of Heat and Mass Transfer, 2016, 93(1):57-66 https://www.researchgate.net/publication/283801931_Flow_and_heat_transfer_characteristics_of_nanofluids_containing_rod-like_particles_in_a_turbulent_pipe_flow
|
[41] |
Shao XM, Zhang XL, Yu ZS, et al. Numerical studies on the dynamics of an open triangle in a vertically oscillatory flow. Journal of Fluid Mechanics, 2016, 788:381-406 doi: 10.1017/jfm.2015.703
|
[42] |
Iso Y, Koch DL, Cohen C. Orientation in simple shear flow of semidilute fiber suspensions 1. Weakly elastic fluids. Journal NonNewtonian Fluid Mech, 1996, 62(2-3):115-134 doi: 10.1016/0377-0257(95)01404-7
|
[43] |
Iso Y, Koch DL, Cohen C. Orientation in simple shear flow of semidilute fiber suspensions 2. Highly elastic fluids. Journal NonNewtonian Fluid Mech, 1996, 62(2-3):135-153 doi: 10.1016/0377-0257(95)01405-5
|
[44] |
Gunes DZ, Scirocco R, Mewis J, et al. Flow-induced orientation of nonspherical particles:effect of aspect ratio and medium rheology. Journal of Non-Newtonian Fluid Mechanics, 2008, 155(1-2):39-50 doi: 10.1016/j.jnnfm.2008.05.003
|
[45] |
Bartram E, Goldsmith HL, Mason SG. Particle motions in non-newtonian media llI. Further observations in elasticoviscous fluids. Rheological Acta, 1971, 14(9): 776-782 https://www.researchgate.net/publication/227016835_Particle_motions_in_non-Newtonian_media
|
[46] |
Johnson SJ, Salem NJ, Fuller GG. Dynamics of colloidal particles in sheared, non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 1990, 34(1): 89-121 doi: 10.1016/0377-0257(90)80013-P
|
[47] |
Gunes DZ, Scirocco R, Mewis J, et al. Flow-induced orientation of nonspherical particles: effect of aspect ratio and medium rheology. Journal of Non-Newtonian Fluid Mechanics, 2008, 155(1-2): 39-50 doi: 10.1016/j.jnnfm.2008.05.003
|
[48] |
Leal LG. The slow motion of slender rod-like particles in a second-order Fluid. Journal of Fluid Mechanics, 1975, 69(2): 305-337 doi: 10.1017/S0022112075001450
|
[49] |
Harlen OG, Koch DL. Simple shear-flow of a suspension of fibers in a dilute polymer-solution at high Deborah number. Journal of Fluid Mechanics, 1993, 252: 187-207 doi: 10.1017/S0022112093003726
|
[50] |
Phan-Thien N, Fan XJ. Viscoelastic mobility problem using a boundary element method. Journal of Non-Newtonian Fluid Mechanics, 2002, 105(2-3): 131-152 doi: 10.1016/S0377-0257(02)00079-4
|
[51] |
Nguyen-Hoang H, Phan-Thien N, Khoo BC. et al. Completed double layer boundary element method for periodic fibre suspension in viscoelastic fluid. Chemical Engineering Science, 2008, 63(15): 3898-3908 doi: 10.1016/j.ces.2008.04.058
|
[52] |
D'Avino G, Hulsen MA, Greco F, et al. Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid. Physical Review E, 2014, 89(4): 043006 doi: 10.1103/PhysRevE.89.043006
|