EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最大熵方法的水下航行体结构动力响应概率建模

周春晓 汪锐琼 聂肇坤 李刚 曾岩

周春晓, 汪锐琼, 聂肇坤, 李刚, 曾岩. 基于最大熵方法的水下航行体结构动力响应概率建模[J]. 力学学报, 2018, 50(1): 114-123. doi: 10.6052/0459-1879-17-022
引用本文: 周春晓, 汪锐琼, 聂肇坤, 李刚, 曾岩. 基于最大熵方法的水下航行体结构动力响应概率建模[J]. 力学学报, 2018, 50(1): 114-123. doi: 10.6052/0459-1879-17-022
Zhou Chunxiao, Wang Ruiqiong, Nie Zhaokun, Li Gang, Zeng Yan. PROBABILISTIC MODELLING OF DYNAMIC RESPONSE OF UNDERWATER VEHICLE STRUCTURE VIA MAXIMUM ENTROPY METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 114-123. doi: 10.6052/0459-1879-17-022
Citation: Zhou Chunxiao, Wang Ruiqiong, Nie Zhaokun, Li Gang, Zeng Yan. PROBABILISTIC MODELLING OF DYNAMIC RESPONSE OF UNDERWATER VEHICLE STRUCTURE VIA MAXIMUM ENTROPY METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 114-123. doi: 10.6052/0459-1879-17-022

基于最大熵方法的水下航行体结构动力响应概率建模

doi: 10.6052/0459-1879-17-022
基金项目: 国家重点基础研究发展计划 (973 计划)(2014CB046506) 和国家自然科学基金 (11372061, 11302035) 资助项目.
详细信息
    作者简介:

    *通讯作者:曾岩, 讲师,主要研究方向:结构非线性随机动力学. E-mail: zengyan@dlut.edu.cn

    通讯作者:

    曾岩

  • 中图分类号: O324;

PROBABILISTIC MODELLING OF DYNAMIC RESPONSE OF UNDERWATER VEHICLE STRUCTURE VIA MAXIMUM ENTROPY METHOD

  • 摘要: 水下航行体结构承受的水动力外载荷具有显著的时空分布不确定性,其引发的结构动力响应,诸如结构最大内力、最大内力发生时刻、最大内力发生位置等也由此产生了不确定性;同时,水下航行体的动力响应还会因其连接或分离结构的拉压刚度不同而出现非线性特征. 为了在水动力外载荷样本有限的基础上,分析水下航行体结构连接非线性对动力响应统计特性的影响, 利用水下航行体结构的简化动力学模型,计算了水动力横向载荷作用下响应的样本统计矩,采用最大熵方法实现了动力响应的概率建模. 在分别求出结构最大内力、最大内力发生时刻、最大内力发生位置的概率密度函数后,通过与蒙特卡洛模拟结果对比验证了最大熵方法拟合的响应概率密度函数精度;而后,基于这些结构响应概率密度曲线讨论了系统连接非线性参数变化对结构动力响应的影响. 最终得出如下结论:连接非线性会导致结构在只有横向力的作用时产生的轴力响应,并且最大轴力概率密度函数峰值会因连接结构非线性程度增大而逐渐增大;连接非线性对不确定性传播有显著影响,当连接非线性比较强时,输入正态分布的载荷所得到的内力响应不是正态分布的;最大内力响应的发生位置也会受到连接非线性程度的影响. 上述结果可以为结构优化提供技术支持.

     

  • [1] 吕海波,权晓波,尹云玉等. 考虑水弹性影响的水下航行体结构动力响应研究. 力学学报,2010, 42(3): 351-356
    [1] Lü Haibo, Quan Xiaobo, Yin Yunyu, et al.Dynamic response research of underwater vehicle with consideration of hydroelascity. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 351-356 (in Chinese)
    [2] 李国良,袁湘江,敖林. 潜射导弹出水载荷数值算法研究. 力学与实践,2013, 35(4): 24-30
    [2] Li Guoliang, Yuan Xiangjiang, Ao Lin, Simulation of under-water launched missile’s water-exitload. Mechanics in Engineering, 2013, 35(4): 24-30 (in Chinese)
    [3] 郑晓亚,徐超,王焘等. 螺栓–法兰连接结构非线性优化设计方法研究综述. 强度与环境,2008, 3(1): 7-13
    [3] Zheng Xiaoya, Xu Chao, Wang Tao, et al.Study on nonlinear optimization design for bolted flanged connection. Structure & Environment Engineering, 2008, 3(1): 7-13 (in Chinese)
    [4] 吴志刚,王本利. 在轨航天器连接结构动力学及其参数辨识. 宇航学报,1998, 19(13): 103-109
    [4] Wu Zhigang, Wang Benli.Dynamics and parameters identification of joints in spacecraft. Journal of Astronautics, 1998, 19(13): 103-109 (in Chinese)
    [5] 栾宇,刘松,关振群等. 小变形下螺栓法兰连接结构的静刚度非线性特性. 强度与环境, 2011, 38(3): 29-35
    [5] Luan Yu, Liu Song, Guan Zhenqun, et al.The nonlinear character of static stiffness in the structure with bolted flanged connection under small deformation. Structure & Environment Engineering, 2011, 38(3): 29-35(in Chinese)
    [6] 江召兵,陈徐均,赵红亮. 浮桥运动响应分析的非线性间隙单元构造与应用. 工程力学, 2012, 29(10): 335-339
    [6] Jiang Zhaobing, Chen Xujun, Zhao Hongliang.Construction and application of nonlinear gap element for dynamic analysis of floating bridge. Engineering Mechanics, 2012, 29(10): 335-339(in Chinese)
    [7] 冯韶伟,刘竹生,栾宇等. 基于拉压不同刚度的运载火箭捆绑联接装置力学特性研究. 导弹与航天运载技术, 2013 (4): 9-13
    [7] Feng Shaowei, Liu Zhusheng, Luan Yu, et al.Dynamic analysis of strap-on equipment in launch vehicle based on different tensile and compressive stiffness.Missiles and Space Vehicles, 2013 (4): 9-13 (in Chinese)
    [8] 芦旭,王平,关振群等. 航天运载器局部连接刚度对振型斜率的影响. 强度与环境, 2014, 41(1): 10-16
    [8] Lu Xu, Wang Ping, Guan Zhenqun, et al.Mode shape slopes prefigure analysis of aerospace vehicle structure. Structure & Environment Engineering, 2014, 41(1): 10-16(in Chinese)
    [9] 芦旭,王平,王建男等. 含剪力销 (锥) 螺栓法兰连接结构非线性特性. 计算力学学报, 2015, 32(4): 503-511
    [9] Lu Xu, Wang Ping, Wang Jiannan, et al.Nonlinear behavior of bolted flange connections containing shear pin(cone). Chinese Journal of Computational Mechanics, 2015, 32(4): 503-511(in Chinese)
    [10] Muscolino G, Santoro R, Sofi A.Reliability analysis of structures with interval uncertainties under stationary stochastic excitations. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 47-69
    [11] An YH, Spencer Jr. BF, Ou JP.Real-time fast damage detection of shear structures with random base excitation. Measurement, 2015, 74: 92-102
    [12] Blachowski B, Gutkowski W.Effect of damaged circular flange-bolted connections on behaviour of tall towers, modelled by multilevel substructuring. Engineering Structures, 2016, 111: 93-103
    [13] Yapici A, Saracoglu G.Fatigue analysis of bolted flange joints of a rotary dryer. Engineering Failure Analysis, 2016, 63: 182-190
    [14] Piollet E, Poquillon D, Michon G.Dynamic hysteresis modeling of entangled cross-linked fibres in shear. Journal of Sound and Vibration, 2016, 383: 248-264
    [15] Scarselli G, Castorini E, Panella FW, et al.Structural behaviour modelling of bolted joints in composite laminates subjected to cyclic loading. Aerospace Science and Technology, 2015, 43: 89-95
    [16] Shannon CE.A mathematical theory of communication. The Bell System Technical Journal, 1948, 27: 379-423
    [17] Jaynes ET.Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620-630
    [18] Zellner A, Highfield RA.Calculation of maximum entropy distributions and approximation of marginal posterior distributions. Journal of Econometrics, 1988, 37(2): 195-209
    [19] Ormoneit D, White H.An efficient algorithm to compute maximum entropy densities. Econometrics Reviews, 1999, 18(2): 127-140
    [20] 韦征,叶继红,沈世钊. 最大熵法可靠度理论在工程中的应用. 振动与冲击, 2007, 26(6): 146-151
    [20] Wei Zheng, Ye Jihong, Shen Shizhao, Engineering application of the maximum entropy reliability theory. Journal of Vibration and Shock, 2007, 26(6): 146-151(in Chinese)
    [21] 李枝军,李爱群,韩晓林等. 基于最大熵谱和模糊聚类分析的斜拉桥拉索索力测试与评估. 工程力学, 2009, 26(11): 88-94
    [21] Li Zhijun, Li Aiqun, Han Xiaolin, et al.Measurement and estimation of the cable tension based on maximum entropy spectral and fuzzy clustering. Engineering Mechanics, 2009, 26(11): 88-94 (in Chinese)
    [22] 郑俊杰,徐志军,刘勇等. 基于最大熵原理的基桩竖向承载力的可靠度分析. 岩土工程学报, 2010, 32(11): 1643-1647
    [22] Zheng Junjie, Xu Zhijun, Liu Yong, et al.Reliability analysis for vertical bearing capacity of piles based on the maximum entropy principle. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1643-1647 (in Chinese)
    [23] 蒋运华,安伟光,周凌. 随机参数超空泡射弹弹道随机特性分析. 计算力学学报, 2011, 28(1): 25-30
    [23] Jiang Yunhua, An Weiguang, Zhou Ling.Trajectory stochastic characteristics analysis of supercavitation projectile with stochastic parameters. Chinese Journal of Computational Mechanics, 2011, 28(1): 25-30(in Chinese)
    [24] 周云,谢利民,蒋运忠等. 多模型结构识别方法及在混凝土连续梁的应用. 地震工程与工程振动, 2015, 35(4): 130-138
    [24] Zhou Yun, Xie Limin, Jiang Yunzhong, et al.Multi-model structural identification method and its application inconcrete continuous beam. Earthquake Engineering and Engineering Dynamics, 2015. 35(4): 130-138(in Chinese)
    [25] 臧红霞,郑华山,陈长茵. 三参数对数正态分布最大熵参数估计方法探讨. 水利科技与经济, 2014, 20(5): 1-4
    [25] Zang Hongxia, Zheng Huashan, Chen Changyin.Maximum entropy estimation methods for ln3 distribution considering. Water Conservancy Science and Technology and Economy, 2014, 20(5): 1-4 (in Chinese)
    [26] 肖东升,吴锟,胡启军等. 基于最大熵的人员震时空间分布模型研究. 世界地震工程, 2014, 30(4): 55-60
    [26] Xiao Dongsheng, Wu Kun, Hu Qijun, et al.Study on distribution of staff at time of earthquake based on maximum entropy model. World Earthquake Enginering, 2014, 30(4): 55-60 (in Chinese)
    [27] 赖雄鸣,王成,张勇等. 最大熵法在可靠度计算中的应用. 计算力学学报, 2015, 32(1): 41-47
    [27] Lai Xiongming, Wang Cheng, Zhang Yong, et al.Application of maximum entropy method in reliability computation. Chinese Journal of Computational Mechanics, 2015, 32(1): 41-47(in Chinese)
    [28] 王宇,李洪双. 最大熵准则识别材料疲劳寿命分布. 航空工程进展, 2015, 6(3): 297-305
    [28] Wang Yu, Li Hongshuang.Maximum entropy principle for identifying the fatigue life distribution of material. Advances in Aeronautical Science and Engineering, 2015, 6(3): 297-305(in Chinese)
    [29] Giffin A, Cafaro C, Ali SA.Application of the maximum relative entropy method to the physics of ferromagnetic materials. Physica A, 2016, 455: 11-26
    [30] Lawrence KE, Summers SR, Heath ACG, et al.Predicting the potential environmental suitability for Theileriaorientalis transmission in New Zealand cattle using maximum entropy niche modeling. Veterinary Parasitology, 2016, 224: 82-91
    [31] Xi ZM, Hu C, Youn BD.A comparative study of probability estimation methods for reliability analysis. Structural and Multidisciplinary Optimization, 2012, 45(1): 33-52
    [32] Li G, Zhang K.A combined reliability analysis approach with dimension reduction method and maximum entropy method. Structural and Multidisciplinary Optimization, 2011, 43(1): 121-134
    [33] 栾宇. 航天器结构中螺栓法兰连接的动力学建模方法研究. [博士论文]. 大连: 大连理工大学, 2011
    [33] Luan Yu.Study on dynamic modeling of bolted flange connections in aerospace structures. [PhD Thesis]. Dalian: Dalian University of Technology, 2011 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  223
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-01-18

目录

    /

    返回文章
    返回