EMBEDDED STRONG DISCONTINUITY MODEL BASED MULTISCALE FINITE ELEMENT METHOD FOR STRAIN LOCALIZATION ANALYSIS
-
摘要: 固体材料的应变局部化行为是导致结构破坏失效的重要因素之一,开展相关数值模拟分析对于结构安全性评估具有重要意义。然而由于材料的非均质和多尺度特性,采用传统数值方法进行求解时通常需要从最小特征尺度离散求解的结构,这将大幅度增加计算规模和成本。针对这一问题,本文提出了一种基于嵌入强间断模型的多尺度有限元方法。该方法从粗细两个尺度离散求解模型,首先在细尺度单元上引入嵌入强间断模型来描述单元间断特性,所附加的跳跃位移自由度则通过凝聚技术进行消除,从而保持细尺度单元刚度阵维度不变。其次,提出了一种增强多节点粗单元技术,其可根据局部化带与粗单元边界相交情况自适应动态地增加粗节点,新构造的增强数值基函数可以捕捉细尺度间断特性,完成物理信息从细单元到粗单元的准确传递以及宏观响应的快速分析;再次,在细尺度解的计算中,将细尺度解分解为降尺度解与单胞局部摄动解,从而消除弹塑性分析时单胞内部的不平衡力。最后,通过两个典型算例分析,并与完全采用细单元的嵌入有限元结果进行对比,验证了所提出算法的正确性与有效性。Abstract: Strain localization is a common factor that may lead to the failure of solid structure and its numerical analysis becomes an important aspect for the structural safety evaluation. Due to the heterogeneity and multiscale nature, however, traditional numerical methods need to resolve the structure at the fine scale to obtain reasonable results, which increases drastically the computational scale and cost. To solve this problem, an embedded strong discontinuity model based multiscale finite element method is proposed here. In this method, both coarse and fine scale elements are used to represent the structure. The embedded strong discontinuity model is first introduced into the fine element to describe the discontinuity and the corresponding additional displacement jump degree of freedom on the elemental level can be eliminated with the condensation technique, which keeps the dimensions of the stiffness matrix unchanged. Then, an enhanced multi-node coarse element technique is proposed, which can adaptively insert coarse nodes according to the intersection between the discontinuity line and coarse element boundary and thus guarantees the proper transformation of information between the fine and coarse elements. The problem can then be effectively solved on the coarse scale level. Moreover, a solution decomposition technique, in which the fine scale solution is decomposed into the downscaling and local perturbation solutions, is adopted to eliminate the unbalance forces within the unit cell in the elasto-plastic analysis. Finally, two representative examples are presented to demonstrate the accuracy and effectiveness of the proposed method through the comparisons with the results of the embedded finite element method.
-
表 1 土柱材料参数
Table 1. Material parameters for the column
表 2 基础材料参数
Table 2. Material parameters for the foundation
-
[1] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620 doi: 10.1002/(ISSN)1097-0207 [2] Schrefler BA, Secchi S, Simoni L. On adaptive refinement techniques in multi-field problems including cohesive fracture. Computer Methods in Applied Mechanics and Engineering, 2006, 195(4-6):444-461 doi: 10.1016/j.cma.2004.10.014 [3] Miehe C, Mauthe S. Phase field modeling of fracture in multiphysics problems. Part Ⅲ. Crack driving forces in hydro-poroelasticity and hydraulic fracturing of fluid-saturated porous media. Computer Methods in Applied Mechanics and Engineering, 2016, 304:619-655 doi: 10.1016/j.cma.2015.09.021 [4] Chen Z, Hu W, Shen L, et al. An evaluation of the MPM for simulating dynamic failure with damage diffusion. Engineering Fracture Mechanics, 2002, 69(17):1873-1890 doi: 10.1016/S0013-7944(02)00066-8 [5] Yang PF, Gan Y, Zhang X, et al. Improved decohesion modeling with the material point method for simulating crack evolution. International Journal of Fracture, 2014, 186(1-2):177-184 doi: 10.1007/s10704-013-9925-1 [6] Boyce BL, Kramer SLB, Fang HE, et al. The Sandia Fracture Challenge:blind round robin predictions of ductile tearing. International Journal of Fracture, 2014, 186(1-2):5-68 doi: 10.1007/s10704-013-9904-6 [7] Bazant ZP, Belytschko T. Wave propagation in a strain-softening bar:Exact solution. Journal of Engineering Mechanics, 1985, 111:381-389 doi: 10.1061/(ASCE)0733-9399(1985)111:3(381) [8] Pijaudier-Cabot G, Bazant ZP. Nonlocal damage theory. Journal of Mechanical Engineering, 1987, 113:1512-1533 doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512) [9] Wolff C, Richart N, Molinari JF. A non-local continuum damage approach to model dynamic crack branching. International Journal for Numerical Methods in Engineering, 2015, 101(12):933-949 doi: 10.1002/nme.v101.12 [10] 李锡夔, 唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报, 2005, 24(9):1497-1505 http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200509005.htmLi Xikui, Tang Hongxiang. Pressure-dependent elasto-plastic Cosserat continuum model and finite element simulation of strain localization. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9):247-253(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200509005.htm [11] Needleman A. Material rate dependence and mesh sensitivity in localization problems. Computer Methods in Applied Mechanics and Engineering, 1988, 67(1):69-85 doi: 10.1016/0045-7825(88)90069-2 [12] de Borst R, Mühlhaus HB. Gradient-dependent plasticity:Formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering, 1992, 35(3):521-539 doi: 10.1002/(ISSN)1097-0207 [13] Peerlings RHJ, de Borst R, Brekelmans WAM, et al. Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39(19):3391-3403 doi: 10.1002/(ISSN)1097-0207 [14] Dolbow J, Moës N, Belytschko T. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design, 2000, 36(3-4):235-260 doi: 10.1016/S0168-874X(00)00035-4 [15] 庄茁, 成斌斌.发展基于CB壳单元的扩展有限元模拟三维任意扩展裂纹.工程力学, 2012, 29(6):12-21 doi: 10.6052/j.issn.1000-4750.2010.08.0616Zhuang Zhuo, Cheng Binbin. Development of X-FEM on CB shell element for simulating 3D arbitrary crack growth. Engineering Mechanics, 2012, 29(6):12-21 (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.08.0616 [16] 石路杨, 余天堂.多裂纹扩展的扩展有限元法分析.岩土力学, 2014, 35(1):263-272 http://cdmd.cnki.com.cn/Article/CDMD-10487-1013015998.htmShi Luyang, Yu Tiantang. Analysis of multiple crack growth using extended finite element method. Rock and Soil Mechanics, 2014, 35(1):263-272 (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10487-1013015998.htm [17] Simo JC, Oliver J, Armero F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics, 1993, 12(5):277-296 doi: 10.1007/BF00372173 [18] Armero F. On the characterization of localized solutions in inelastic solids:an analysis of wave propagation in a softening bar. Computer Methods in Applied Mechanics and Engineering, 2001, 191(3-5):181-213 doi: 10.1016/S0045-7825(01)00265-1 [19] Borja RI, Regueiro RA. Strain localization in frictional materials exhibiting displacement jumps. Computer Methods in Applied Mechanics and Engineering, 2001, 190(20-21):2555-2580 doi: 10.1016/S0045-7825(00)00253-X [20] Benkemoun N, Gelet R, Roubin E, et al. Poroelastic two-phase material modeling:theoretical formulation and embedded finite element method implementation. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(12):1255-1275 doi: 10.1002/nag.v39.12 [21] Linder C, Armero F. Finite elements with embedded strong discontinuities for the modeling of failure in solids. International Journal for Numerical Methods in Engineering, 2007, 72(12):1391-1433 doi: 10.1002/(ISSN)1097-0207 [22] 郑利涛, 胡志强, 唐洪祥.强间断分析方法在土工结构物渐进破坏过程中的应用.岩土力学, 2012, 33(9):2771-2780 http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209038.htmZheng Litao, Hu Zhiqiang, Tang Hongxiang. Application of strong discontinuity analysis to progressive failure process of geotechnical structures. Rock and Soil Mechanics, 2012, 33(9):2771-2780(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209038.htm [23] 徐栋栋, 郑宏, 杨永涛等.多裂纹扩展的数值流形法.力学学报, 2015, 47(3):471-481 doi: 10.6052/0459-1879-14-347Xu Dongdong, Zheng Hong, Yang Yongtao et al. Multiple crack propagation based on the numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):471-481(in Chinese) doi: 10.6052/0459-1879-14-347 [24] Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 1990, 29(8):1595-1638 doi: 10.1002/(ISSN)1097-0207 [25] Kouznetsova V, Geers MGD, Brekelmans WAM. Multi-scale constitutive modelling of heterogeneous materials with a gradientenhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 2002, 54(8):1235-1260 doi: 10.1002/(ISSN)1097-0207 [26] Yang ZQ, Cui JZ, Sun Y, et al. Multiscale computation for transient heat conduction problem with radiation boundary condition in porous materials. Finite Elements in Analysis and Design, 2015, 102:7-18 http://www.sciencedirect.com/science/article/pii/S0168874X15000621 [27] Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134 (1):169-189 doi: 10.1006/jcph.1997.5682 [28] Dostert P, Efendiev Y, Hou TY. Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Computer Methods in Applied Mechanics and Engineering, 2008, 197(43-44):3445-3455 doi: 10.1016/j.cma.2008.02.030 [29] Efendiev Y, Hou TY. Multiscale Finite Element Methods.[s.l.]:Springer Science & Business Media, 2009 [30] Zhang HW, Wu JK, Fu ZD. Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Computational Mechanics, 2010, 45(6):623-635 doi: 10.1007/s00466-010-0475-3 [31] 卓小翔, 刘辉, 楚锡华等.非均质材料动力分析的广义多尺度有限元法.力学学报, 2016, 48(2):378-386 doi: 10.6052/0459-1879-15-211Zhuo Xiaoxiang, Liu Hui, Chu Xihua, et al. A generalized multiscale finite element method for dynamic analysis of heterogeneous material. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):378-386(in Chinese) doi: 10.6052/0459-1879-15-211 [32] 张洪武, 卢梦凯, 郑勇刚.非均质饱和多孔介质弹塑性动力分析的广义耦合扩展多尺度有限元法.计算力学学报, 2016, 33(4):454-461 doi: 10.7511/jslx201604005Zhang Hongwu, Lu Mengkai, Zheng Yonggang. General coupling extended multi-scale finite element method for the elastoplastic dynamic analysis of heterogeneous saturated porous media. Chinese Journal of Computational Mechanics, 2016, 33(4):454-461(in Chinese) doi: 10.7511/jslx201604005 [33] Lv J, Yang K, Zhang HW, et al. A hierarchical multiscale approach for predicting thermo-electro-mechanical behavior of heterogeneous piezoelectric smart materials. Computational Materials Science, 2014, 87:88-99 doi: 10.1016/j.commatsci.2014.01.059 [34] Liu H, Lü J. An equivalent continuum multiscale formulation for 2D geometrical nonlinear analysis of lattice truss structure. Composite Structures, 2017, 160:335-348 doi: 10.1016/j.compstruct.2016.10.072 [35] Zhang HW, Lu MK, Zheng YG, et al. General coupling extended multiscale FEM for elasto-plastic consolidation analysis of heterogeneous saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(1):63-95 doi: 10.1002/nag.v39.1 [36] Lu MK, Zhang HW, Zheng YG, et al. A multiscale finite element method with embedded strong discontinuity model for the simulation of cohesive cracks in solids. Computer Methods in Applied Mechanics and Engineering, 2016, 311:576-598 doi: 10.1016/j.cma.2016.09.006 [37] Simo JC, Hughes TJR. Computational Inelasticity.[s.l.]:Springer Science & Business Media, 2006 [38] de Souza Neto EA, Peric D, Owen DRJ. Computational Methods for Plasticity. New Jersey:John Wiley & Sons, 2011 [39] Parvaneh SM, Foster CD. On numerical aspects of different updating schedules for tracking fracture path in strain localization modeling. Engineering Fracture Mechanics, 2016; 152:26-57 doi: 10.1016/j.engfracmech.2015.11.011 -