A TRANSVERSELY ISOTROPIC VISCO-HYPERELASTIC CONSTITUTIVE MODEL FOR SHORT FIBER REINFORCED EPDM
-
摘要: 短纤维增强三元乙丙橡胶包覆薄膜,是一种应用于固体火箭发动机缠绕包覆装药的新型复合材料。为了描述其在工作过程中受振动、冲击等载荷作用时的力学行为,基于黏弹性理论和纤维增强连续介质力学理论,提出了一种考虑应变率强化效应的横观各向同性黏-超弹本构模型。模型中应变能函数被分解为超弹性应变能和黏性应变能,其中超弹性应变能包括表征各向同性的橡胶基体应变能和表征各向异性的纤维拉伸应变能,黏性应变能采用表征橡胶和纤维黏性响应的宏观唯象模型。选取表征各应变能的函数形式,经过数学变换、替代、叠加,求解确定最终的应力应变形式,明确模型参数获取的具体步骤,将预测结果与实验结果对比分析,准确性较高。研究表明:该模型能有效预测材料在低应变率下纤维方向为0°~45°的非线性率相关力学特性;模型形式易于实现有限元开发,对固体火箭发动机装药结构完整性分析具有参考价值。Abstract: Short fiber reinforced EPDM inhibitor film is a new type composite material, which has been applied in solid rocket motor winding and coating. Based on viscoelastic theory and fiber reinforced continuum mechanics theory, a transversely isotropic visco-hyperelastic constitutive model is proposed to describe strain rate dependent mechanical behaviors under vibration, impact and other loading conditions. The strain energy function is decomposed into hyperelastic strain energy and viscous strain energy, in which hyperelastic strain energy includes two parts: representing the strain energy from isotropic rubber matrix and anisotropic fiber tensile deformation. A macro-phenomenological model is proposed to characterize the viscous response from rubber matrix and fibers. Then, select the function form of each strain energy. After a series of mathematical transformation, substitution and superposition, the final form of stress and strain is determined. Moreover, the specific steps to obtain model parameters are defined. Finally, the predicted and experimental results are compared and analyzed, which indicates high accuracy of the proposed model. Studies show that it can effectively predict their nonlinear and strain rate dependent mechanical behaviors in the fiber direction from 0° to 45° at low strain rate. It is concluded that the proposed model is easy to realize finite element development, which has reference value for the structural integrity analysis of solid rocket motor.
-
Key words:
- EPDM /
- transversely isotropic /
- visco-hyperelastic /
- constitutive model
-
表 1 短纤维材料参数C2和C3
Table 1. Short fiber material parameter C2 and C3
表 2 黏弹性材料参数ηi
Table 2. Viscoelastic material parameters ηi
-
[1] 汪建丽, 王红丽, 熊治荣等.三元乙丙橡胶绝热层在固体火箭发动机中的应用.宇航材料工艺, 2009, 39(2):12-14 http://www.cnki.com.cn/Article/CJFDTOTAL-YHCG200902002.htmWang Jianli, Wang Hongli, Xiong Zhirong, et al. EPDM rubber insulation applied in solid rocket motor. Aerospace Materials and Technology, 2009, 39(2):12-14(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YHCG200902002.htm [2] Natali M, Rallini M, Kenny J, et al. Effect of Wollastonite on the ablation resistance of EPDM based elastomeric heat shielding materials for solid rocket motors. Polymer Degradation & Stability, 2016, 130:47-57 http://www.sciencedirect.com/science/article/pii/S0141391016301495 [3] Singh S, Guchhait PK, Bandyopadhyay GG, et al. Development of polyimide-nanosilica filled EPDM based light rocket motor insulator compound:Influence of polyimide-nanosilica loading on thermal, ablation, and mechanical properties. Composites Part A Applied Science & Manufacturing, 2013, 44(1):8-15 http://www.researchgate.net/profile/Prasanta_Guchhait/publication/236786155_Development_of_polyimidenanosilica_filled_EPDM_based_light_rocket_motor_insulator_compound_Influence_of_polyimidenanosilica_loading_on_thermalablation_and_mechanical_properties/links/0deec51a5b486c404f000000.pdf?disableCoverPage=true [4] 路向辉, 杨士山, 刘晨等.填料对三元乙丙橡胶包覆层性能影响研究.化工新型材料, 2013, 41(10):131-132 doi: 10.3969/j.issn.1006-3536.2013.10.043Lu Xianghui, Yang Shishan, Liu Chen, et al. Study on the influence of fillers on the properties of EPDM rubber coating. New Chemical Materials, 2013, 41(10):131-132 (in Chinese) doi: 10.3969/j.issn.1006-3536.2013.10.043 [5] 王纪霞, 张志鹏, 赵荣等.三元乙丙橡胶绝热层力学性能的改善.航天制造技术, 2013(4):41-44 http://www.cnki.com.cn/Article/CJFDTOTAL-HTGY201304011.htmWang Jixia, Zhang Zhipeng, Zhao Rong, et al. Enhancement of mechanical performances of EPDM rubber insulation. Aerospace Manufacturing Technology, 2013(4):41-44(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HTGY201304011.htm [6] 张少实.复合材料与黏弹性力学.第2版.北京:机械工业出版社, 2005Zhang Shaoshi. Composite Materials and Viscoelastic Mechanics. Second edition. Beijing:China Machine Press, 2005(in Chinese) [7] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics & Physics of Solids, 1993, 41(2):389-412 http://www.sciencedirect.com/science/article/pii/0022509693900136 [8] Mooney M. A theory of large elastic deformation. Journal of Applied Physics, 1940, 11(9):582-592 doi: 10.1063/1.1712836 [9] Yeoh OH. Characterization of elastic properties of carbon-blackfilled rubber vulcanizates. Rubber Chemistry & Technology, 1990, 63(5):792-805 [10] Christensen RM. A nonlinear theory of viscoelasticity for application to elastomers. Journal of Applied Mechanics, 1980, 47(4):762-768 doi: 10.1115/1.3153787 [11] Yang LM, Shim VPW, Lim CT. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. International Journal of Impact Engineering, 2000, 24(6):545-560 http://www.sciencedirect.com/science/article/pii/S0734743X99000445 [12] Bergström JS, Boyce MC. Large strain time-dependent behavior of filled elastomers. Mechanics of Materials, 2000, 32(11):627-644 doi: 10.1016/S0167-6636(00)00028-4 [13] Song B, Chen W. Dynamic compressive behavior of EPDM rubber under nearly uniaxial strain conditions. Journal of Engineering Materials & Technology, 2004, 126(2):213-217 https://www.researchgate.net/publication/249505907_Dynamic_Compressive_Behavior_of_EPDM_Rubber_Under_Nearly_Uniaxial_Strain_Conditions [14] Jiang J, Xu JS, Zhang ZS, et al. Rate-dependent compressive behavior of EPDM insulation:Experimental and constitutive analysis. Mechanics of Materials, 2016, 96:30-38 doi: 10.1016/j.mechmat.2016.02.003 [15] 董金平, 张志强.基于横观各向同性超弹性理论的短纤维增强橡胶本构模型的建立与应用.计算力学学报, 2016, 33(2):231-237 doi: 10.7511/jslx201602014Dong Jinping, Zhang Zhiqiang. Establishment and application of short fiber reinforced rubber constitutive model based on transversely isotropic hyperelastic theory. Chinese Journal of Computational Mechanics, 2016, 33(2):231-237(in Chinese) doi: 10.7511/jslx201602014 [16] Pierce DM, Trobin W, Raya JG, et al. DT-MRI based computation of collagen fiber deformation in human articular cartilage:A feasibility study. Annals of Biomedical Engineering, 2010, 38(7):2447-2463 doi: 10.1007/s10439-010-9990-9 [17] Balzani D, Brinkhues S, Holzapfel GA. Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Computer Methods in Applied Mechanics & Engineering, 2012, 213-216(4):139-151 http://www.sciencedirect.com/science/article/pii/S0045782511003616 [18] Jiang Y, Wang Y, Peng X. A visco-hyperelastic constitutive model for human spine ligaments. Cell Biochemistry and Biophysics, 2015, 71(2):1147-1156 doi: 10.1007/s12013-014-0322-9 [19] 胡少青, 鞠玉涛, 常武军等. NEPE固体推进剂黏--超弹性本构模型研究.兵工学报, 2013, 34(2):168-173 http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201302007.htmHu Shaoqing, Ju Yutao, Chang Wujun, et al. A visco-hyperelastic constitutive behavior of NEPE propellant. Acta Armamentarii, 2013, 34(2):168-173 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201302007.htm [20] 胡小玲. 炭黑填充橡胶黏超弹性力学行为的宏细观研究. [博士论文]. 湘潭: 湘潭大学, 2013Hu Xiaoling. Micro and macro viscohyperelastic behavior of carbon black filled rubbers.[PhD Thesis]. Xiangtan:Xiangtan University, 2013 (in Chinese) [21] Boccaccio A, Lamberti L, Papi M, et al. A hybrid characterization framework to determine the visco-hyperelastic properties of a porcine zona pellucida. Interface Focus A Theme Supplement of Journal of the Royal Society Interface, 2014, 4(2):86-108 http://www.researchgate.net/profile/Massimiliano_Papi/publication/261143897_A_hybrid_characterization_framework_to_determine_the_visco-hyperelastic_properties_of_a_porcine_zona_pellucida/links/53ecd1b60cf26b9b7dbfe7b2.pdf [22] 黄小双, 彭雄奇, 张必超.帘线/橡胶复合材料各向异性黏--超弹性本构模型.力学学报, 2016, 48(1):140-145 doi: 10.6052/0459-1879-15-189Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao. An anisotropic visco-hyperelastic constitutive model for cord-rubber composites.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):140-145 (in Chinese) doi: 10.6052/0459-1879-15-189 [23] Zhurov AI, Evans SL, Holt CA, et al. A nonlinear compressible transversely-isotropic viscohyperelastic constitutive model of the periodontal ligament//Proceedings of ASME, 2008 International Mechanical Engineering Congress and Exposition, 2008:707-719 [24] Kulkarni SG, Gao XL, Horner SE, et al. A transversely isotropic visco-hyperelastic constitutive model for soft tissues. Mathematics & Mechanics of Solids, 2014, 21(6):747-770 https://www.researchgate.net/publication/275440761_A_transversely_isotropic_visco-hyperelastic_constitutive_model_for_soft_tissues [25] Spencer AJM. Continuum Theory of the Mechanics of Fiberreinforced Composites. New York:Springer, 1984 [26] Zhang F. Viscoelastic constitutive model of cord-rubber composite. Journal of Reinforced Plastics & Composites, 2005, 24(12):1311-1320 https://www.researchgate.net/publication/258157030_Viscoelastic_Constitutive_Model_of_Cord-Rubber_Composite [27] Guo Z, Peng X, Moran B. Large deformation response of a hyperelastic fibre reinforced composite:Theoretical model and numerical validation. Composites Part A Applied Science & Manufacturing, 2007, 38(8):1842-185 http://www.sciencedirect.com/science/article/pii/S1359835X07000711 [28] Limbert G, Middleton J. A transversely isotropic viscohyperelastic material:Application to the modeling of biological soft connective tissues. International Journal of Solids & Structures, 2004, 41(14):4237-4260 https://www.researchgate.net/publication/223278533_A_transversely_isotropic_viscohyperelastic_material_Application_to_the_modeling_of_biological_soft_connective_tissues [29] Holzapfel GA. Nonlinear solid mechanics:A continuum approach for engineering science. Meccanica, 2002, 37(4):489-490 [30] Brown LW, Smith LM. A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers. Journal of Engineering Materials & Technology, 2011, 133(2):307-314 https://www.researchgate.net/publication/274438882_A_Simple_Transversely_Isotropic_Hyperelastic_Constitutive_Model_Suitable_for_Finite_Element_Analysis_of_Fiber_Reinforced_Elastomers [31] Ishikawa S, Tokuda A, Kotera H. Numerical simulation for fiber reinforced rubber. Journal of Computational Science and Technology, 2008, 2(4):587-596 doi: 10.1299/jcst.2.587 [32] 李晓芳, 杨晓翔.橡胶材料的超弹性本构模型.弹性体, 2005, 15(1):50-58 http://cdmd.cnki.com.cn/Article/CDMD-10216-1016764013.htmLi Xiaofang, Yang Xiaoxiang. A review of elastic constitutive model for rubber materials. China Elastomerics, 2005, 15(1):50-58(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10216-1016764013.htm [33] Peng XQ, Guo ZY, Du TL, et al. A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites, 2013, 52(52):275-281 http://www.sciencedirect.com/science/article/pii/S1359836813001625 [34] Mattucci SF, Moulton JA, Chandrashekar N, et al. Strain rate dependent properties of younger human cervical spine ligaments. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10(10):216-226 http://www.sciencedirect.com/science/article/pii/S1751616112000537 -