EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大长细比导弹的气动弹性降阶模型

杨执钧 黄锐 刘豪杰 赵永辉 胡海岩 王乐

杨执钧, 黄锐, 刘豪杰, 赵永辉, 胡海岩, 王乐. 大长细比导弹的气动弹性降阶模型[J]. 力学学报, 2017, 49(3): 517-527. doi: 10.6052/0459-1879-16-358
引用本文: 杨执钧, 黄锐, 刘豪杰, 赵永辉, 胡海岩, 王乐. 大长细比导弹的气动弹性降阶模型[J]. 力学学报, 2017, 49(3): 517-527. doi: 10.6052/0459-1879-16-358
Yang Zhijun, Huang Rui, Liu Haojie, Zhao Yonghui, Hu Haian, Wang Le. AEROELASTIC MODEL OF REDUCED-ORDER FOR A SLENDER MISSILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 517-527. doi: 10.6052/0459-1879-16-358
Citation: Yang Zhijun, Huang Rui, Liu Haojie, Zhao Yonghui, Hu Haian, Wang Le. AEROELASTIC MODEL OF REDUCED-ORDER FOR A SLENDER MISSILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 517-527. doi: 10.6052/0459-1879-16-358

大长细比导弹的气动弹性降阶模型

doi: 10.6052/0459-1879-16-358
基金项目: 

国家自然科学基金 11502106

航空科学基金 2015ZA52

江苏省自然科学基金 BK20150736

江苏省普通高校研究生科研创新计划 KYLX15 0251

详细信息
    通讯作者:

    2) 胡海岩, 中国科学院院士, 教授, 主要研究方向:飞行器结构动力学与控制.E-mail:hhyae@nuaa.edu.cn

  • 中图分类号: V211;V215.3

AEROELASTIC MODEL OF REDUCED-ORDER FOR A SLENDER MISSILE

  • 摘要: 对于大长细比导弹,需要在设计阶段准确计算气动弹性/气动伺服弹性,但其复杂的气动力给计算带来困难,因此气动力降阶模型是突破大长细比导弹跨音速气动弹性分析与控制瓶颈的关键技术。虽然气动力模型降阶方法已在预测二维机翼结构的气动弹性方面取得重要进展,但几乎未见关于全机模型的气动力降阶模型研究报道。本文基于递归Wiener模型的气动力降阶方法,利用CFD计算的气动力作为模型辨识数据,用鲁棒子空间和Levenberg-Marquardt算法辨识降阶模型参数,建立了大长细比导弹气动力降阶模型。在此基础上与大长细比导弹有限元模型相结合,构造出气动弹性降阶模型,并在数值仿真中测试气动弹性降阶模型在不同马赫数下的适用性。数值仿真结果表明,该气动弹性降阶模型能够精确预测导弹模型在不同飞行条件下的非定常气动力和导弹模型的气动弹性频率响应特性。

     

  • 图  1  大长细比导弹模型及其有限元模型

    Figure  1.  A slender missile model and the mesh of finite elements

    图  2  大长细比导弹模型的前两阶弹性模态

    Figure  2.  First two elastic modes of the slender missile model

    图  3  BACT机翼模型的气动力训练信号

    Figure  3.  Training signal of aerodynamic load on the BACT wing model

    图  4  BACT机翼模型的气动力验证信号

    Figure  4.  Verification signal of aerodynamic load on the BACT wing model

    图  5  BACT机翼模型的颤振边界

    Figure  5.  Flutter boundary of the BACT wing model

    图  6  BACT机翼模型的极限环颤振幅值

    Figure  6.  Amplitude of the limit cycle flutter of the BACT wing model

    图  7  大长细比导弹的CFD网格

    Figure  7.  CFD grid for a slender missel model

    图  8  导弹模型表面压力分布系数

    Figure  8.  Surface pressure distribution coefficient on the slender missile model

    图  9  不同尾舵偏转时导弹模型表面的CFD网格

    Figure  9.  CFD grid on the missile model for different deflections of a tail fin

    图  10  导弹模型的气动力训练信号

    Figure  10.  Training signal of aerodynamic load on the missile model

    图  11  导弹模型的气动力验证信号

    Figure  11.  Verification signal of aerodynamic load on the missile model

    图  12  导弹模型的气动弹性响应

    Figure  12.  Aeroelastic responses of the missile model

    图  13  导弹模型的一阶模态位移频谱

    Figure  13.  The frequency spectrum of the first-order modal displacement of the missile model

    图  14  导弹模型的二阶模态位移频谱

    Figure  14.  The frequency spectrum of the second-order modal displacement of the missile model

    表  1  导弹模型气动弹性响应计算时间

    Table  1.   Computation time for aeroelastic responses of the missile model

  • [1] 胡海岩, 赵永辉, 黄锐.飞机结构气动弹性分析与控制研究.力学学报, 2016, 48(1):1-27 doi: 10.6052/0459-1879-15-423

    Hu Haiyan, Zhao Yonghui, Huang Rui. Studies on aeroelastic analysis and control of aircraft structures. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):1-27 (in Chinese) doi: 10.6052/0459-1879-15-423
    [2] 陈桂彬, 邹丛青, 杨超.气动弹性设计基础.北京:北京航空航天大学出版社, 2004

    Chen Guibin, Zou Congqing, Yang Chao. Fundamentals of Aeroelastic Design. Beijing:Press of Beijing University of Aeronautics and Astronautics, 2004 (in Chinese)
    [3] Bismarck-Nasr MN. Kernel function occurring in subsonic unsteady potential flow. AIAA Journal, 1991, 29(6):878-879 doi: 10.2514/3.10673
    [4] Rodden WP, Taylor PF, McIntosh SC. Further refinement of the subsonic doublet-lattice method. Journal of Aircraft, 1998, 35(5):720-727 doi: 10.2514/2.2382
    [5] Liu F, Cai J, Zhu Y, et al. Calculation of wing flutter by a coupled fluid-structure method. Journal of Aircraft, 2001, 38(2):334-342 doi: 10.2514/2.2766
    [6] Marques FD, Anderson J. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer functionals. Journal of Fluids and Structures, 2001, 15(1):83-106 doi: 10.1006/jfls.2000.0321
    [7] Hall KC, Thomas JP, Dowell EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA Journal, 2000, 38(10):1853-1862 doi: 10.2514/2.867
    [8] Xie D, Xu M, Dowell EH. Proper orthogonal decomposition reduced-order model for nonlinear aeroelastic oscillations. AIAA Journal, 2014, 52(2):229-241 doi: 10.2514/1.J051989
    [9] Liu Haojie, Hu Haiyan, Zhao Yonghui, et al. Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations. Journal of Fluids and Structures, 2014, 49(8):728-741 https://www.researchgate.net/profile/Rui_Huang15/publication/263893740_Efficient_reduced-order_modeling_of_unsteady_aerodynamics_robust_to_flight_parameter_variations/links/542b63f90cf29bbc126a84e0.pdf
    [10] Mannarino A, Mantegazza P. Nonlinear aeroelastic reduced order modeling by recurrent neural networks. Journal of Fluids and Structures, 2014, 48:103-121 doi: 10.1016/j.jfluidstructs.2014.02.016
    [11] Zhang Weiwei, Wang Bobin, Ye Zhengyin, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-ordermodels. AIAA Journal, 2012, 50(5):1019-1028 doi: 10.2514/1.J050581
    [12] 陈刚, 徐敏, 陈士橹.基于Volterra级数的非线性非定常气动力降阶模型.宇航学报, 2009, 25(5):492-495 http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200405004.htm

    Chen Gang, Xu Min, Chen Shilu. Reduced-order model based on volterra series in nonlinear unsteady aerodynamics. Journal of Astronautics, 2009, 25(5):492-495 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200405004.htm
    [13] 陈刚, 李跃明.非定常流场降阶模型及应用研究进展与展望.力学进展, 2011, 41(6):686-701 doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009

    Chen Gang, Li Yueming. Advances and prospects of the reduced order model for unsteady flow and its application. Advances in Mechanics, 2011, 41(6):686-701 (in Chinese) doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009
    [14] Wu Zhigang, Chu Longfei, Yuan Ruizhi, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles. Science China Technological Sciences, 2012, 55(9):2482-2488 doi: 10.1007/s11431-012-4940-4
    [15] 杨超, 吴志刚.导弹气动伺服弹性稳定性分析.飞行力学, 2000, 18(4):1-5 http://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200203006.htm

    Yang Chao, Wu Zhigang. Aeroservoelastic stability of missile. Flight Dynamics, 2000, 18(4):1-5 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200203006.htm
    [16] 吴志刚, 杨超.弹性导弹的连续与离散阵风响应.北京航空航天大学学报, 2007, 33(2):136-140 http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200702002.htm

    Wu Zhigang, Yang Chao. Continuous and discrete gust responses of elastic missiles. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2):136-140 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200702002.htm
    [17] 全景阁, 叶正寅, 张伟伟.轴向载荷对大长细比导弹稳定性的影响研究.兵工学报, 2015, 36(1):94-102 http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201501015.htm

    Quan Jingge, Ye Zhengyin, Zhang Weiwei. Analysis on stability of a slender missile under axial loads. Acta Armamentarii, 2015, 36(1):94-102 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201501015.htm
    [18] Huang Rui, Li Hongkun, Hu Haiyan, et al. Open/closed-loop aeroservoelastic predictions via nonlinear, reduced-order aerodynamic models. AIAA Journal, 2015, 53(7):1812-1824 doi: 10.2514/1.J053424
    [19] Chiuso A, Picci G. Consistency analysis of some closed-loop subspace identification methods. Automatica, 2005, 41(3):377-391 doi: 10.1016/j.automatica.2004.10.015
    [20] Chiuso A. The role of vector autoregressive modeling in predictorbased subspace identification. Automatica, 2007, 43(6):1034-1048 doi: 10.1016/j.automatica.2006.12.009
    [21] Houtzager I, Wingerden JW, Verhaegen M. Recursive predictorbased subspace identification with application to the real-time closed-loop tracking of flutter. IEEE Transactions on Control Systems Technology, 2012, 20(4):934-949 doi: 10.1109/TCST.2011.2157694
    [22] Moré JJ. The Levenberg-Marquardt algorithm:implementation and theory//Numerical analysis. Berlin Heidelberg:Springer, 1978:105-116
    [23] Waszak MR. Modeling the benchmark active control technology wind-tunnel model for application to flutter suppression. AIAA Paper, 1996, 3437 http://www.cs.odu.edu/~mln/ltrs-pdfs/NASA-aiaa-96-3437.pdf
    [24] McNamara JJ, Friedmann PP. Flutter boundary identification for time-domain computational aeroelasticity. AIAA Journal, 2007, 45(7):1546-1555 doi: 10.2514/1.26706
    [25] Borglund D, Ringertz U. Efficient computation of robust flutter boundaries using the mu-k method. Journal of Aircraft, 2006, 43(6):1763-1769 doi: 10.2514/1.20190
    [26] Guruswamy GP. Frequency domain flutter boundary computations using Navier-Stokes equations on superclusters. Journal of Aircraft, 2014, 51(5):1640-1642 doi: 10.2514/1.C032126
    [27] 张伟伟, 王博斌, 叶正寅.跨音速极限环型颤振的高效数值分析方法.力学学报, 2010, 42(6):1023-1033 http://lxxb.cstam.org.cn/CN/abstract/abstract142026.shtml

    Zhang Weiwei, Wang Bobin, Ye Zhengyin. High efficient numerical method for LCO analysis in transonic flow. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6):1023-1033 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract142026.shtml
    [28] Denegri CM. Limit cycle oscillation flight test results of a fighter with external stores. Journal of Aircraft, 2000, 37(5):761-769 doi: 10.2514/2.2696
    [29] Thomas JP, Dowell EH, Hall KC. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach. Journal of Aircraft, 2004, 41(6):1266-1274 doi: 10.2514/1.9839
    [30] Chen YM, Liu JK, Meng G. Equivalent damping of aeroelastic system of an airfoil with cubic stiffness. Journal of Fluids and Structures, 2011, 27(8):1447-1454 doi: 10.1016/j.jfluidstructs.2011.02.004
    [31] Cui Peng, Han Jinglong. Numerical investigation of the effects of structural geometric and material nonlinearities on limit-cycle oscillation of a cropped delta wing. Journal of Fluids and Structures, 2011, 27(4):611-622 doi: 10.1016/j.jfluidstructs.2011.03.015
    [32] Stanford B, Beran P. Direct flutter and limit cycle computations of highly flexible wings for efficient analysis and optimization. Journal of Fluids and Structures, 2013, 36(1):111-123 https://www.researchgate.net/publication/258796431_Direct_flutter_and_limit_cycle_computations_of_highly_flexible_wings_for_efficient_analysis_and_optimization
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1203
  • HTML全文浏览量:  104
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 网络出版日期:  2017-03-21
  • 刊出日期:  2017-05-18

目录

    /

    返回文章
    返回