EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多相材料有效性能预测的高精度方法

朱合华 陈庆

朱合华, 陈庆. 多相材料有效性能预测的高精度方法[J]. 力学学报, 2017, 49(1): 41-47. doi: 10.6052/0459-1879-16-347
引用本文: 朱合华, 陈庆. 多相材料有效性能预测的高精度方法[J]. 力学学报, 2017, 49(1): 41-47. doi: 10.6052/0459-1879-16-347
Zhu Hehua, Chen Qingy. AN APPROACH FOR PREDICTING THE EFFECTIVE PROPERTIES OF MULTIPHASE COMPOSITE WITH HIGH ACCURACY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47. doi: 10.6052/0459-1879-16-347
Citation: Zhu Hehua, Chen Qingy. AN APPROACH FOR PREDICTING THE EFFECTIVE PROPERTIES OF MULTIPHASE COMPOSITE WITH HIGH ACCURACY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47. doi: 10.6052/0459-1879-16-347

多相材料有效性能预测的高精度方法

doi: 10.6052/0459-1879-16-347
基金项目: 

国家自然科学基金 51508404,U1534207

和高性能土木工程材料国家重点实验室 2015CEM008

详细信息
    通讯作者:

    朱合华,教授,主要研究方向:隧道及地下结构计算方法.E-mail:zhuhehua@tongji.edu.cn

    3)陈庆,助理研究员,主要研究方向:混凝土修复,细观力学,地下结构.E-mail:chenqing19831014@163.com

  • 中图分类号: O343.7

AN APPROACH FOR PREDICTING THE EFFECTIVE PROPERTIES OF MULTIPHASE COMPOSITE WITH HIGH ACCURACY

  • 摘要: 有效介质方法是常用的细观力学方法之一.其可用于计算多相材料的有效性能,并建立材料微细观结构和宏观性能的定量关系;有助于指导新材料设计,减少试验工作量等.然而,当夹杂含量升高时,传统有效介质方法的计算精度下降.本文以两相材料为研究对象,提出一种新的参考介质,即:为更合理考虑不同夹杂颗粒间的相互作用,假定参考介质的应变是基体相平均应变和某一修正张量的双点积.在此基础上,推导了新参考介质下两相材料的有效模量表达式,并给出该修正张量的近似计算方法;通过反复更新参考介质,采用多层次均匀化思路,将本文方法进一步用于多相材料性能的预测.为验证方法的有效性,将预测结果与已有模型结果和试验数据进行对比.结果表明本文方法较已有方法更为合理、有效.当夹杂含量升高时,本文方法较传统有效介质方法的计算精度有所提升.

     

  • 图  1  杨氏模量对比图

    Figure  1.  The comparisons among the Young's modulus obtained by experiment and different micromechanical methods

    图  2  剪切模量对比图

    Figure  2.  The comparisons among the shear modulus obtained by experiment and different micromechanical methods

    图  3  体积模量对比图

    Figure  3.  The comparisons among the bulk modulus obtained by experiment and different micromechanical methods

    表  1  不同细观力学模型预测结果和试验结果对比

    Table  1.   The comparisons among the results obtained by experiment and different micromechanical methods

  • [1] Qu JM, Cherkaoui M. Fundamentals of Micromechanics of Solids. Hoboken, New Jersey:John Wiley & Sons, Inc. 2006
    [2] Mura T. Micromechanics of Defects in Solids. The Netherlands:Martinus Nijhoff Publishers, 1987
    [3] Sheng P. Effective-medium theory of sedimentary rocks. Physical Review B, 1990, 41:4507-4512 http://cn.bing.com/academic/profile?id=bd6a24da3ffd289618a352216c1791f0&encoded=0&v=paper_preview&mkt=zh-cn
    [4] Sheng P, Callegari A. Differential effective medium theory of sedimentary rocks. Applied Physics Letters, 1984, 44:738-740 doi: 10.1063/1.94900
    [5] Nguyen N, Giraud A, Grgic D. A composite sphere assemblage model for porous oolitic rocks. International Journal of Rock Mechanics and Mining Sciences, 2011, 48:909-921 doi: 10.1016/j.ijrmms.2011.05.003
    [6] Li G, Zhao Y, Pang SS. Four-phase sphere modeling of effective bulk modulus of concrete. Cement and Concrete Research, 1999, 29:839-845 doi: 10.1016/S0008-8846(99)00040-X
    [7] Wang H, Li Q. Prediction of elastic modulus and Poisson's ratio for unsaturated concrete. International Journal of Solids and Structures, 2007, 44:1370-1379 doi: 10.1016/j.ijsolstr.2006.06.028
    [8] Yaman I, Aktan H, Hearn N. Active and non-active porosity in concrete part Ⅱ:evaluation of existing models. Materials and Structures, 2002, 35:110-116 doi: 10.1007/BF02482110
    [9] 王海龙,李庆斌. 饱和混凝土的弹性模量预测.清华大学学报(自然科学版), 2005, 45(6):761-763 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200506011.htm

    Wang Hailong, Li Qingbin. Saturated concrete elastic modulus prediction. Journal of Tsinghua University (Science and Technology), 2005, 45(6):761-763(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200506011.htm
    [10] Zhu HH, Chen Q, Yan ZG, et al. Micromechanical model for saturated concrete repaired by electrochemical deposition method. Materials and Structures, 2014, 47:1067-1082 doi: 10.1617/s11527-013-0115-4
    [11] Yan ZG, Chen Q, Zhu HH, et al. A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method. International Journal of Solids and Structures, 2013, 50(24):3875-3885 doi: 10.1016/j.ijsolstr.2013.07.020
    [12] 陈庆. 多相材料随机细观力学模型及其在电化学沉积修复混凝土中的应用.[博士论文]. 上海:同济大学, 2014

    Chen Qing. The stochastic micromechanical models of the multiphase materials and their applications for the concrete repaired by electrochemical deposition method.[PhD Thesis]. Shanghai:Tongji University, 2014(in Chinese)
    [13] 陈庆,朱合华,闫治国等. 基于Mori-Tanaka法的电化学沉积修复饱和混凝土细观描述.建筑结构学报, 2015, 36(1):98-103 http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201501014.htm

    Chen Qing, Zhu Hehua, Yan Zhiguo, et al. Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on Mori-Tanaka method. Journal of Building Structures, 2015, 36(1):98-103(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201501014.htm
    [14] 陈庆,朱合华,闫治国等.基于自洽理论的电化学沉积修复饱和混凝土细观描述.力学学报, 2015, 47(2):367-371 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201502020.htm

    Chen Qing, Zhu Hehua, Yan Zhiguo, et al. Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):367-371(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201502020.htm
    [15] Chen Q, Jiang ZW, Yang ZH, et al. Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method. Materials and Structures, 2016, 49(12):5183-5193 doi: 10.1617/s11527-016-0853-1
    [16] Ju JW, Chen T. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mechanica, 1994, 103:123-144 doi: 10.1007/BF01180222
    [17] Ju JW, Chen T. Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mechanica, 1994, 103:103-121 doi: 10.1007/BF01180221
    [18] Chen Q, Zhu HH, Ju JW, et al. A stochastic micromechanical model for multiphase composite containing spherical inhomogeneities. Acta Mechanica, 2015, 226(6):1861-1880 doi: 10.1007/s00707-014-1278-y
    [19] Zhu HH, Chen Q, Ju JW, et al. Maximum entropy based stochastic micromechanical model for two-phase composite considering the inter-particle interaction effect. Acta Mechanica, 2015, 226(9):3069-3084 doi: 10.1007/s00707-015-1375-6
    [20] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1957, 241:376-396
    [21] Eshelby JD. The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1959, 252:561-569
    [22] Eshelby JD. Elastic inclusions and inhomogeneities. Progress in Solid Mechanics, 1961, 2:89-140 http://cn.bing.com/academic/profile?id=97aa68a8935583a761e9bdd06a2a456c&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 1973, 21:571-574 doi: 10.1016/0001-6160(73)90064-3
    [24] Benveniste Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 1987, 6:147-157 doi: 10.1016/0167-6636(87)90005-6
    [25] Chen Q, Zhu HH, Yan ZG, et al. A multiphase micromechanical model for hybrid fiber reinforced concrete considering the aggregate and ITZ effects. Construction and Building Materials, 2016, 114:839-850 doi: 10.1016/j.conbuildmat.2016.04.008
    [26] Nezhad MM, Zhu HH, Ju JW, et al. A simplified multiscale damage model for the transversely isotropic shale rocks under tensile loading. International Journal of Damage Mechanics, 2016, 25:705-726 doi: 10.1177/1056789516639531
    [27] Chen Q, Nezhad MM, Fisher Q, et al. Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone. International Journal of Rock Mechanics and Mining Sciences, 2016, 84:95-104 doi: 10.1016/j.ijrmms.2016.02.007
    [28] Smith JC. Experimental values for the elastic constants of a particulate-filled glassy polymer. Journal of Research of the National Bureau of Standards, 1976, 80A:45-49 doi: 10.6028/jres.080A.008
    [29] Walsh JB, Brace WE, England AW. Effect of porosity on compressibility of glass. Journal of the American Ceramic Society, 1965, 48:605-608 doi: 10.1111/jace.1965.48.issue-12
    [30] Cohen L, Ishai O. The elastic properties of three-phase composites. Journal of Composite Materials, 1967, 1:390-403 doi: 10.1177/002199836700100407
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  77
  • PDF下载量:  645
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-25
  • 修回日期:  2016-11-28
  • 网络出版日期:  2016-12-02
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回