AN APPROACH FOR PREDICTING THE EFFECTIVE PROPERTIES OF MULTIPHASE COMPOSITE WITH HIGH ACCURACY
-
摘要: 有效介质方法是常用的细观力学方法之一.其可用于计算多相材料的有效性能,并建立材料微细观结构和宏观性能的定量关系;有助于指导新材料设计,减少试验工作量等.然而,当夹杂含量升高时,传统有效介质方法的计算精度下降.本文以两相材料为研究对象,提出一种新的参考介质,即:为更合理考虑不同夹杂颗粒间的相互作用,假定参考介质的应变是基体相平均应变和某一修正张量的双点积.在此基础上,推导了新参考介质下两相材料的有效模量表达式,并给出该修正张量的近似计算方法;通过反复更新参考介质,采用多层次均匀化思路,将本文方法进一步用于多相材料性能的预测.为验证方法的有效性,将预测结果与已有模型结果和试验数据进行对比.结果表明本文方法较已有方法更为合理、有效.当夹杂含量升高时,本文方法较传统有效介质方法的计算精度有所提升.Abstract: The effective medium approach is one of the common micromechanical methods, which can be utilized to predict the material's effective properties and set up the quantitative relationship between the material's microstructures and macroscopic properties.It is helpful and meaningful for the new material design and reducing the (experimental) workload to use these micromechanical estimations of the material's properties.However, the calculation accuracy will decline when the effective medium method is adopted to estimate the effective properties of the composite with high volume fraction of inclusions.Therefore, in this paper the two-phase composite is taken as the example firstly and the strain of the reference medium is assumed to be the product of the average strain of the matrix and a modifying tensor.Then the expressions of the effective modulus are derived with the proposed reference medium.What's more, the solutions for modifying tensor are reached by using the achievement we obtained recently.Further, through optimizing the reference medium repeatedly, with the help of multi-level homogenization scheme, the proposed modified method is extended to predict the properties of the multiphase composite with many types of inclusions.To verify our proposed framework, the predictions are compared with the experimental data and the results of existing models.The comparisons show that the estimations of the presented method are more reasonable and acceptable.When the volume fraction of inclusions is higher, the calculation accuracy of the presented method in this paper is better than those of the existing effective medium methods.
-
表 1 不同细观力学模型预测结果和试验结果对比
Table 1. The comparisons among the results obtained by experiment and different micromechanical methods
-
[1] Qu JM, Cherkaoui M. Fundamentals of Micromechanics of Solids. Hoboken, New Jersey:John Wiley & Sons, Inc. 2006 [2] Mura T. Micromechanics of Defects in Solids. The Netherlands:Martinus Nijhoff Publishers, 1987 [3] Sheng P. Effective-medium theory of sedimentary rocks. Physical Review B, 1990, 41:4507-4512 http://cn.bing.com/academic/profile?id=bd6a24da3ffd289618a352216c1791f0&encoded=0&v=paper_preview&mkt=zh-cn [4] Sheng P, Callegari A. Differential effective medium theory of sedimentary rocks. Applied Physics Letters, 1984, 44:738-740 doi: 10.1063/1.94900 [5] Nguyen N, Giraud A, Grgic D. A composite sphere assemblage model for porous oolitic rocks. International Journal of Rock Mechanics and Mining Sciences, 2011, 48:909-921 doi: 10.1016/j.ijrmms.2011.05.003 [6] Li G, Zhao Y, Pang SS. Four-phase sphere modeling of effective bulk modulus of concrete. Cement and Concrete Research, 1999, 29:839-845 doi: 10.1016/S0008-8846(99)00040-X [7] Wang H, Li Q. Prediction of elastic modulus and Poisson's ratio for unsaturated concrete. International Journal of Solids and Structures, 2007, 44:1370-1379 doi: 10.1016/j.ijsolstr.2006.06.028 [8] Yaman I, Aktan H, Hearn N. Active and non-active porosity in concrete part Ⅱ:evaluation of existing models. Materials and Structures, 2002, 35:110-116 doi: 10.1007/BF02482110 [9] 王海龙,李庆斌. 饱和混凝土的弹性模量预测.清华大学学报(自然科学版), 2005, 45(6):761-763 http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200506011.htmWang Hailong, Li Qingbin. Saturated concrete elastic modulus prediction. Journal of Tsinghua University (Science and Technology), 2005, 45(6):761-763(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200506011.htm [10] Zhu HH, Chen Q, Yan ZG, et al. Micromechanical model for saturated concrete repaired by electrochemical deposition method. Materials and Structures, 2014, 47:1067-1082 doi: 10.1617/s11527-013-0115-4 [11] Yan ZG, Chen Q, Zhu HH, et al. A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method. International Journal of Solids and Structures, 2013, 50(24):3875-3885 doi: 10.1016/j.ijsolstr.2013.07.020 [12] 陈庆. 多相材料随机细观力学模型及其在电化学沉积修复混凝土中的应用.[博士论文]. 上海:同济大学, 2014Chen Qing. The stochastic micromechanical models of the multiphase materials and their applications for the concrete repaired by electrochemical deposition method.[PhD Thesis]. Shanghai:Tongji University, 2014(in Chinese) [13] 陈庆,朱合华,闫治国等. 基于Mori-Tanaka法的电化学沉积修复饱和混凝土细观描述.建筑结构学报, 2015, 36(1):98-103 http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201501014.htmChen Qing, Zhu Hehua, Yan Zhiguo, et al. Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on Mori-Tanaka method. Journal of Building Structures, 2015, 36(1):98-103(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201501014.htm [14] 陈庆,朱合华,闫治国等.基于自洽理论的电化学沉积修复饱和混凝土细观描述.力学学报, 2015, 47(2):367-371 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201502020.htmChen Qing, Zhu Hehua, Yan Zhiguo, et al. Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):367-371(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201502020.htm [15] Chen Q, Jiang ZW, Yang ZH, et al. Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method. Materials and Structures, 2016, 49(12):5183-5193 doi: 10.1617/s11527-016-0853-1 [16] Ju JW, Chen T. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mechanica, 1994, 103:123-144 doi: 10.1007/BF01180222 [17] Ju JW, Chen T. Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mechanica, 1994, 103:103-121 doi: 10.1007/BF01180221 [18] Chen Q, Zhu HH, Ju JW, et al. A stochastic micromechanical model for multiphase composite containing spherical inhomogeneities. Acta Mechanica, 2015, 226(6):1861-1880 doi: 10.1007/s00707-014-1278-y [19] Zhu HH, Chen Q, Ju JW, et al. Maximum entropy based stochastic micromechanical model for two-phase composite considering the inter-particle interaction effect. Acta Mechanica, 2015, 226(9):3069-3084 doi: 10.1007/s00707-015-1375-6 [20] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1957, 241:376-396 [21] Eshelby JD. The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1959, 252:561-569 [22] Eshelby JD. Elastic inclusions and inhomogeneities. Progress in Solid Mechanics, 1961, 2:89-140 http://cn.bing.com/academic/profile?id=97aa68a8935583a761e9bdd06a2a456c&encoded=0&v=paper_preview&mkt=zh-cn [23] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 1973, 21:571-574 doi: 10.1016/0001-6160(73)90064-3 [24] Benveniste Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 1987, 6:147-157 doi: 10.1016/0167-6636(87)90005-6 [25] Chen Q, Zhu HH, Yan ZG, et al. A multiphase micromechanical model for hybrid fiber reinforced concrete considering the aggregate and ITZ effects. Construction and Building Materials, 2016, 114:839-850 doi: 10.1016/j.conbuildmat.2016.04.008 [26] Nezhad MM, Zhu HH, Ju JW, et al. A simplified multiscale damage model for the transversely isotropic shale rocks under tensile loading. International Journal of Damage Mechanics, 2016, 25:705-726 doi: 10.1177/1056789516639531 [27] Chen Q, Nezhad MM, Fisher Q, et al. Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone. International Journal of Rock Mechanics and Mining Sciences, 2016, 84:95-104 doi: 10.1016/j.ijrmms.2016.02.007 [28] Smith JC. Experimental values for the elastic constants of a particulate-filled glassy polymer. Journal of Research of the National Bureau of Standards, 1976, 80A:45-49 doi: 10.6028/jres.080A.008 [29] Walsh JB, Brace WE, England AW. Effect of porosity on compressibility of glass. Journal of the American Ceramic Society, 1965, 48:605-608 doi: 10.1111/jace.1965.48.issue-12 [30] Cohen L, Ishai O. The elastic properties of three-phase composites. Journal of Composite Materials, 1967, 1:390-403 doi: 10.1177/002199836700100407 -