AERODYNAMIC LOAD AND STRUCTURE STRESS ANALYSIS ON HOOD OF HIGH-SPEED RAILWAY TUNNEL
-
摘要: 高速列车通过隧道时,会引起车隧气动效应.在隧道洞口设置缓冲结构是简便有效的应对措施之一.而缓冲结构一般设置在隧道洞口,列车通过隧道产生气动载荷对该结构的影响也不容忽视.本文采用数值方法,利用Ansys软件的workbench模拟平台,对列车通过隧道产生的气动载荷作用在顶部单开口缓冲结构上的压应力变化进行模拟.研究结果表明:气动载荷所引起的结构附加应力作用明显.当行车速度为350 km/h时,附加应力可以达到80 kPa,而缓冲结构开口周围成为气动载荷附加应力集中区.对于双线隧道,近车壁面与远车壁面的附加压应力规律一致,但近车侧应力值要大于远车侧.与压力波在隧道内的传播特性类似,气动载荷所引起的附加压应力具有往复传播特征.另外,对顶部缓冲结构开口附近出现附加应力集中的原因进行了分析,确定缓冲结构形式是引起应力集中的决定因素.以上结论对隧道洞口缓冲结构的设计及安全巡查具有一定的指导意义.Abstract: When high speed train passes through tunnel, aerodynamic effect will be induced.Setting hood at tunnel entrance is one of the convenient and effective measures for controlling aerodynamic effect.While the hood usually lay at tunnel entrance, in a long run, the aerodynamic load on the structure also should not be overlooked.In this paper, using Ansys-workbench simulation platform, the fluid structure coupling character induced by aerodynamic load on single top opening hood was analyzed.The research results showed that the extra-pressure stress induced by aerodynamic load was notable.To the train of running speed 350 km/h, the induced extra pressure stress on hood structure can reach 80 kPa.On the tunnel hood, the region around the openings appeared a relative high extra pressure stress.Since the tunnel is used for double railway line, the variation law of extra pressure stress on the tunnel hood inertial side wall of close to and far from train is almost same, while the stress pressure on inertial side wall of close to train is a little larger than that on the other side.Like the compression wave transportation in tunnel, the extra pressure stress induced by aerodynamic load also shows reciprocating transmission characteristics.The reason of stress concentration around the hood openings was deduced and showed that hood structure condition is the intrinsic fact for resulting in the detrimental effect.These conclusions on aerodynamic load are advisable for tunnel hood design and safety checking.
-
Key words:
- high-speed train /
- tunnel /
- hood /
- aerodynamic load /
- fluid structure coupling
-
表 1 缓冲结构力学参数
Table 1. Tunnel hood structure mechanics parameter
-
[1] 赵晶. 高速列车通过隧道时气动影响研究.[博士论文]. 成都:西南交通大学, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10613-1011233274.htmZhao Jing. A study on aerodynamic influence of high-speed trains passing tunnels.[PhD Thesis]. Chengdu:Southwest Jiaotong University, 2010(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10613-1011233274.htm [2] 冯志鹏, 张继业, 张卫华. 高速列车在隧道内和明线上交会时气动性能对比分析. 铁道车辆, 2010(12):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201012002.htmFeng Zhipeng, Zhang Jiye, Zhang Weihua. Comparison and analysis of the aerodynamic performance of high-speed trains passing by each other inside tunnel and on open track. Rolling Stock, 2010(12):1-6(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201012002.htm [3] 马伟斌, 张千里, 刘艳青. 中国高速铁路隧道气动效应研究进展. 交通运输工程学报, 2012(4):29-36 http://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201204003.htmMa Weibin, Zhang Qianli, Liu Yanqing. Study evolvement of high-speed railway tunnel aerodynamic effect in china. Journal of Traffic and Transportation Engineering, 2012(4):29-36(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201204003.htm [4] 马云东,李博,范斌. 空气动力学效应作用下高速铁路隧道细观力学数值模拟. 大连交通大学学报,2011, (8):16-19 http://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201104004.htmMa Yundong, Li Bo, Fan Bin. Mesomechanics numerical simulation of high-speed railway tunnel under the action of aerodynamic effect. Journal of Dalian Jiaotong University, 2011, (8):16-19(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201104004.htm [5] 范斌. 高速铁路隧道空气动力学效应及其对支护结构耐久性影响.[博士论文]. 大连:大连交通大学, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10150-2010236957.htmFan Bin. Research on aerodynamic effect of high-speed railway tunnel and its impact on the durability of lining structure.[PhD Thesis]. Dalian:Dalian Jiaotong University, 2010(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10150-2010236957.htm [6] 赵文成,高波,王英学. 高速铁路隧道口微压波减缓措施分析. 地下空间与工程学报, 2005(2):274-277 http://www.cnki.com.cn/Article/CJFDTOTAL-BASE200502024.htmZhao Wencheng, Gao Bo, Wang Yingxue. Analysis of the mitigation methods of micro——pressure wave generated around high-speed railway tunnel exits. Chinese Journal of Underground Space and Engineering, 2005(2):274-277(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BASE200502024.htm [7] Howe MS, Lida M, Fukuda T, et al. Aero-acoustics of a tunnel-entrance hood with a rectangular window. Journal of Fluid Mechanics, 2003,4(8):211-243 [8] Howe MS. Design of a tunnel-entrance hood with multiple windows and variable cross-section. Journal of Fluids and Structures, 2003, 17(8):1111-1121 doi: 10.1016/S0889-9746(03)00067-7 [9] Raghunathana RS, Kimb HD, Setoguchic T. Aerodynamics of high-speed railway train. Progress in Aerospace Sciences, 2002, 38(6):469-514 http://cn.bing.com/academic/profile?id=a665c267fcd7116586e6b332558fe28c&encoded=0&v=paper_preview&mkt=zh-cn [10] 杨国伟,魏宇杰,赵桂林等.高速列车的关键力学问题.力学进展, 2015, 45:201507 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htmYang Guowei, Wei Yujie,Zhao Guilin, et al. Research progress on the mechanics of high speed rails.Advances in Mechanics, 2015, 45:201507(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm [11] 骆建军,吴尽,陈鹏飞. 高速铁路并联隧道横通道对隧道内压力变化的影响. 北京交通大学学报, 2015,39(1):8-13 http://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201501002.htmLuo Jianjun,Wu Jin,Chen Pengfei. Pressure change from the cross aisle when the train passing through parallel tunnel of high-speed railway. Journal of Beijing Jiaotong University,2015,39(1):8-13(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201501002.htm [12] 马静,张杰,杨志刚. 横风下高速列车非定常空气动力特性研究. 铁道学报,2008,30(6):109-114 http://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200806025.htmMa Jing, Zhang Jie, Yang Zhigang. Study on the unsteady aerodynamic characteristics of a high-speed train under cross wind. Journal of the China Railway Society, 2008,30(6):109-114(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200806025.htm [13] 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述. 力学进展,2010, 40(4):424-447 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004006.htmZhang Laiping, Deng Xiaogang, Zhang Hanxin. Reviews of moving grid generation techniques and numerical methods for unsteady flow. Advances in Mechanics, 2010, 40(4):424-447(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004006.htm [14] 邢景棠,周盛,崔尔杰. 流固耦合力学概述. 力学进展,1997, 27(1):19-38 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ701.002.htmXing Jingtang, Zhou Sheng, Cui Erjie. A survey of the fluid-solid interaction mechanics. Advances in Mechanics, 1997, 27(1):19-38(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ701.002.htm [15] 刘如山,胡少卿,石宏彬.地下结构抗震计算中拟静力法的地震载荷施加方法研究. 岩土工程学报, 2007, 29(2):237-242 http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htmLiu Rushan, Hu Shaoqing,Shi Hongbin. Study on seismic loading of pseudo-static approach used in the seismic design of underground structure. Chinese Journal of Geotechnical Engineering, 2007, 29(2):237-242(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm [16] 宋学官,蔡林,张华. Ansys流固耦合分析与工程实例. 北京:中国水利水电出版社出版,2012Song Xueguan, Cai Lin, Zhang Hua. Ansys fluid-solid interaction mechanics analysis and engineering example. Beijing:Water Resources and Hydropower Press, 2012(in Chinese) [17] 沈继华. 充气膜结构流固耦合效应下的风振响应分析.[博士论文]. 上海:上海交通大学,2012 http://cdmd.cnki.com.cn/Article/CDMD-10248-1012017920.htmShen Jihua. Research on the fluid-soid coupling effect of wind-induced vibration response of inflatable membrane structure.[PhD Thesis]. Shanghai:Shanghai Jiaotong University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10248-1012017920.htm [18] 解元玉. 基于ANSYS Workbench的流固耦合计算研究及工程应用.[硕士论文]. 太原理工大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10112-1011081021.htmXie Yuanyu. FSI calculation of research based on ANSYS workbench and engineering applications.[Master Thesis]. Taiyuan:Taiyuan University of Technology, 2014(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10112-1011081021.htm [19] Wang YX,Ren WQ,He J, et al. Analysis of aerodynamic loading properties on hood of high-speed railway tunnel. Perspectives in Science, 2016, 7:323-328 doi: 10.1016/j.pisc.2015.12.004 -