EI、Scopus 收录

## 留言板

 引用本文: 耿大将, Peijun Guo, 周顺华. 结构性软土弹塑性模型的隐式算法实现[J]. 力学学报, 2018, 50(1): 78-86.
Dajiang Geng, Peijun Guo, Shunhua Zhou. Implicit numerical integration of an elasto-plastic constitutive model for structured clays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 78-86. doi: 10.6052/0459-1879-16-340
 Citation: Dajiang Geng, Peijun Guo, Shunhua Zhou. Implicit numerical integration of an elasto-plastic constitutive model for structured clays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 78-86.

## 结构性软土弹塑性模型的隐式算法实现

##### doi: 10.6052/0459-1879-16-340

###### 通讯作者: 耿大将
• 中图分类号: TU432;

## Implicit numerical integration of an elasto-plastic constitutive model for structured clays

• 摘要: 对于考虑软土结构性的高度非线性弹塑性本构模型,在采用Newton-CPPM隐式算法对模型进行数值实现的过程中容易出现Jacobian矩阵奇异和不收敛问题。为此,本文提出了两种改进隐式算法。考虑到Newton-CPPM隐式算法是局部收敛性算法,因此引入大范围收敛的同伦延拓算法对Newton-CPPM算法的迭代初值进行改进,形成了同伦-Newton-CPPM算法。考虑到Newton-CPPM隐式算法单个迭代步的计算量过大,因此借鉴显式算法的思想提出一种两阶段迭代算法,第一阶段先求出一致性参数,第二阶段采用类似于显示算法的方法进行回代得出状态变量的值。然后,以考虑软土结构性的SANICLAY模型为例,从弹塑性本构模型的组成和算法的特点两个角度分析了引起Jacobian矩阵奇异和不收敛问题的原因,并且在单单元计算的基础上,对全显式算法、传统隐式算法和两种改进隐式算法在计算收敛性、计算精度和计算效率方面进行了对比。最后,将同伦-Newton-CPPM算法和传统隐式算法用于地基承载力多单元计算中,结果表明该算法能够有效地解决Jacobian矩阵奇异和不收敛问题。

•  1 Callisto L, Rampello S.Shear strength and small-strain stiffness of a natural clay under general stress conditions. Geotechnique, 2002, 52(8):547-560. 2 于亚磊, 叶冠林, 熊永林. 上海第4层黏土力学特性的弹塑性本构模拟. 岩土力学,2016,9:2541-2546 2 Yu Yalei, Ye Guanlin, Xiong Yonglin.Elasto-plastic constitutive modelling for mechanical behavior of Shanghai 4th layer clay. Rock and Soil Mechanics, 2016,9: 2541-2546(in Chiniese) 3 Liu WZ, Shi ML, Miao LC, et al.Constitutive modeling of the destructuration and anisotropy of natural soft clay. Computers and Geotechnics, 2013, 51:24-41. 4 Panayides S, Rouainia M, Woodd M.Influence of degradation of structure on the behaviour of a full-scale embankment. Canadian Geotechnical Journal, 2012, 49(3):344-356. 5 Rocchi G, Vaciago G, Fontana M, et al.Understanding sampling disturbance and behaviour of structured clays through constitutive modelling. Soils and Foundations, 2013, 53(2):315-334. 6 Taiebat M, Dafalias YF, Peek R.A destructuration theory and its application to SANICLAY model. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(10):1009-1040. 7 Suebsuk J, Horpibulsuk S, Liu MD.Modified Structured Cam Clay: A generalised critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 2010, 37:956-968. 8 Cotecchia F, Chandler RJ.A general framework for the mechanical behaviour of clays. Geotechnique, 2000, 50(4):431-447. 9 Callisto L, Gajo A, Wood DM.Simulation of triaxial and true triaxial tests on natural and reconstituted Pisa clay. Geotechnique, 2002, 52(9):649-666. 10 10祝恩阳, 姚仰平. 结构性土UH模型. 岩土力学,2015, 11:3101-3110 10 Zhu Enyang, Yao Yangping, A UH constitutive model for structured soils. Rock and Soil Mechanics, 2015,11: 3101-3110(in Chiniese) 11 Lloret CM, Sloan SW, Sheng DC, et al.Error behaviour in explicit integration algorithms with automatic substepping. International Journal for Numerical Methods in Engineering, 2016,108(9):1030-1053. 12 Bicanic N, Pearce CJ.Computational aspects of a softening plasticity model for plain concrete. Mechanics of Cohesive-frictional Materials, 1996, 1(1):75-94. 13 Stupkiewicz S, Denzer R, Piccolroaz A, et al.Implicit yield function formulation for granular and rock-like materials. Computational Mechanics, 2014, 54(5):1163-1173. 14 Valentini B, Hofstetter G.Review and enhancement of 3D concrete models for large-scale numerical simulations of concrete structures. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(3):221-246. 15 Jiu JL.Integration algorithm for a modified Yoshida-Uemori odel to simulate cyclic plasticity in extremely large plastic strain ranges up to fracture. Computers and Structures, 2014, 145:36-46. 16 Majid MT, Karma Y.On implementation and performance of an anisotropic constitutive model for clays. International Journal of Computational Methods, 2014, 11(2):1-31. 17 Penasa M, Piccolroaz A, Argani L, et al.Integration algorithms of elastoplasticity for ceramic powder compaction. Journal of the European Ceramic Society, 2014, 34(11):2775-2788. 18 Crouch SC, Tahar B.Application of a stress return algorithm for elasto-plastic hardening-softening models with high yield surface curvature. In: Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona, 11-14, September 2000. 19 Wang W, Datcheva M, Schanz T, et al.A sub-stepping approach for elasto-plasticity with rotational hardening. Computational Mechanics, 2006, 37(3):266-278. 20 Hernandez JA, Oliver J, Cante JC, et al.A robust approach to model densification and crack formation in powder compaction processes. International Journal for Numerical Methods in Engineering, 2011, 87(8):735-767. 21 Brannon RM, Leelavanichkul S.A multi-stage return algorithm for solving the classical damage component of constitutive models for rocks, ceramics, and other rock-like media. International Journal of Fracture, 2010, 163:133-149. 22 Homel MA, Brannon RM.Relaxing the multi-stage nested return algorithm for curved yield surfaces and nonlinear hardening laws. International Journal of Fracture, 2015, 194(1):1-7. 23 Homel MA, Guilkey JE, Brannon RM.Numerical solution for plasticity models using consistency bisection and a transformed-space closest-point return: a nongradient solution method. Computational Mechanics, 2015, 56(4):565-584. 24 Bilotta A, Leonetti L, Garcea G.An algorithm for incremental elastoplastic analysis using equality constrained sequential quadratic programming. Computers and Structures, 2012, 102:97-107. 25 Contrafatto L, Cuomo A.A globally convergent numerical algorithm for damaging elasto-plasticity based on the Multiplier method. International Journal for Numerical Methods in Engineering, 2005, 63(8):1089-1125. 26 Perez FA, Armero F.On the formulation of closest-point projection algorithms in elastoplasticity-part II: Globally convergent schemes. International Journal for Numerical Methods in Engineering, 2002, 53(2):331-374. 27 Dafalias YF, Manzari MT, Akaishi M.A simple anisotropic clay plasticity model. Mechanics Research Communications, 2002, 29(4):241-245. 28 Ortiz M, Popov EP.Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 1985, 21(9):1561-1576. 29 Ortiz M, Simo JC.An analysis of a new class of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 1986, 23(3):353-366. 30 Abbasbandy S, Tan Y, Liao SJ.Newton-homotopy analysis method for nonlinear equations. Applied Mathematics and Computation, 2007, 188(2):1794-1800. 31 石玉仁, 许新建, 吴枝喜, 等. 同伦分析法在求解非线性演化方程中的应用. 物理学报,2006,55(4):1555-1560 32 Shi Yuren, Xu Xinjian, Wu Zhixi, et al.Application of the homotopy analysis method to solving nonlinear evolution equations. ACTA PHYSICA SINICA 2006,55(4):1555-1560(in Chiniese) 32 Wu Y, Cheung KF.Two-parameter homotopy method for nonlinear equations. Numerical Algorithms, 2010, 53(4):555-572. 33 Wu TM.Solving the nonlinear equations by the Newton-homotopy continuation method with adjustable auxiliary homotopy function. Applied Mathematics and Computation, 2006, 173(1):383-388.

##### 计量
• 文章访问数:  1299
• HTML全文浏览量:  141
• PDF下载量:  377
• 被引次数: 0
##### 出版历程
• 收稿日期:  2017-11-21
• 刊出日期:  2018-01-18

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈