A SYSTEM RELIABILITY ANALYSIS METHOD FOR STRUCTURES WITH PROBABILITY AND INTERVAL MIXED UNCERTAINTY
-
摘要: 系统可靠性问题中通常存在大量的不确定参数,传统方法一般是基于概率模型对系统进行可靠性分析,但是实际工程中由于数据缺乏或试验条件的限制往往难以得到参数的精确概率分布.本文将结构体系一部分样本信息充足的不确定变量用随机变量进行描述,而另一部分样本缺乏的用区间表示,并提出了一种新的含概率与区间混合不确定性的系统可靠性分析方法.首先,基于一个高效求解方法获得单失效模式下结构的最小可靠度指标;再针对多失效模式下含概率与区间混合不确定性问题建立了系统可靠性分析模型;考虑各失效模式之间的相关性,通过线性相关度计算方法求得相关系数矩阵;最后提出了串联体系和并联体系可靠度求解方法.3个数值算例表明,该方法可以实现含概率与区间混合的多个非线性失效模式下系统可靠度的计算.通过对比传统的概率可靠性分析方法,本文方法只需要少量的不确定信息便可确保系统更加安全,更适合复杂结构系统可靠性的分析和设计.
-
关键词:
- 系统可靠性 /
- 概率与区间混合不确定性 /
- 最大失效概率 /
- 失效模式相关性
Abstract: There are a large number of inherently uncertain parameters in the problem of system reliability. Traditional system reliability analysis methods are usually based on the probability model assumption. Probability distribution function of uncertain parameters can be easily obtained with sufficient samples, but in practical engineering problems, it is often difficult to get the precise probability distribution function with limited data or test conditions. In this paper, the uncertain variables of the system based on sufficient information are taken as the random variables, while others with limited information can only be given variation intervals. This paper proposes a new system reliability analysis method for structures with probability and interval mixed uncertainty. Firstly, the minimum reliability index of each failure mode is obtained based on an efficient solution method. Then the system reliability model under multiple failure modes with probability and interval mixed uncertainty is provided. Considering the dependence between different failure modes of systems, a correlation coefficient matrix is obtained by the linear correlation calculated method. Finally, the maximum failure probabilities are calculated for series and parallel system. Three numerical examples show that the present method can effectively deal with the system reliability problems of multiple nonlinear failure modes with probability and interval mixed uncertainty. Compared to the traditional probabilistic reliability analysis method, the presented method can ensure the security of system well and it only needs less uncertain information, and hence it seems suitable for reliability analysis and design of many complex engineering structures or systems. -
表 1 两单元Daniels系统不确定变量分布类型和参数
Table 1. Distribution types and parameter of uncertain variables of the two-component Daniels system
表 2 两单元Daniels系统的可靠性分析结果
Table 2. The reliability analysis results of the two-component Daniels system
表 3 悬臂梁的不确定变量分布类型和参数
Table 3. Distribution types and parameter of uncertain variables of the cantilever beam
表 4 悬臂梁的系统可靠性分析结果
Table 4. The system reliability analysis results of the cantilever beam
表 5 车辆耐撞问题的不确定变量分布类型和参数
Table 5. Distribution types and parameter of uncertain variables of the vehicle crashworthiness problem
表 6 车辆耐撞问题的3个功能函数响应面
Table 6. Response surface for the three performance functions in the vehicle crashworthiness problem
表 7 车辆耐撞问题的系统可靠性分析结果
Table 7. The system reliability analysis results of the vehicle crashworthiness problem
-
[1] Guo J, Du XP. Sensitivity analysis with mixture of epistemic and aleatory uncertainties. AIAA J, 2007, 45:2337-2349 doi: 10.2514/1.28707 [2] Hasofer AM, Lind NC. Exact and invariant second-moment code format. ASME J Eng Mech Div, 1974, 100:111-121 https://www.researchgate.net/publication/236660847_Exact_and_Invariant_Second_Moment_Code_Format [3] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Comput Struct, 1978, 9:489-494 doi: 10.1016/0045-7949(78)90046-9 [4] Fiessler B, Rackwiyz R, Neumann H. Quadratic limit states in structural reliability. Journal of the Engineering Mechanics Division, 1979, 105(4):661-676 https://www.researchgate.net/publication/283599999_Quadratic_Limit_States_in_Structural_Reliability [5] Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety. ASME J Eng Mech Div, 1981, 107(6):1227-1238 http://citeseerx.ist.psu.edu/showciting?cid=2513648 [6] Breitung KW. Asymptotic approximation for multinormal integrals. ASCE J Eng Mech, 1984, 110(3):357-366 doi: 10.1061/(ASCE)0733-9399(1984)110:3(357) [7] Breitung KW. Asymptotic Approximation for Probability Integrals. Berlin:Springer-Verlag, 1994 [8] Rubinstein RY, Kroese DP. Simulation and the Monte-Carlo method. 2nd ed. New York:Wiley, 2007 [9] Du XP, Chen W. Sequential optimization and reliability assessment method for efficient probabilistic design. Journal of Mechanical Design, 2004, 126(2):225-233 doi: 10.1115/1.1649968 [10] Liang JH, Mourelatos ZP, Nikolaidis E. A single-loop approach for system reliability-based design optimization. Journal of Mechanical Design, 2007, 129:1215-1224 doi: 10.1115/1.2779884 [11] Ben-Haim Y, Elishakoff I. Convex Models of Uncertainty in Applied Mechanics. Amsterdam:Elsevier Science, 1990 [12] Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety, 1994, 14:227-245 doi: 10.1016/0167-4730(94)90013-2 [13] Ben-Haim Y. Robust Reliability in the Mechanical Sciences. Berlin: Springer-Verlag, 1996 [14] Rao SS, Berke L. Pantelides C. Analysis of uncertain structural systems using interval analysis. AIAA Journal, 1997, 35(4):727-735 doi: 10.2514/2.164 [15] Qiu Z, Elishakoff I. Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Computer Methods in Applied Mechanics and Engineering, 1998, 152(3):361-372 http://www.sciencedirect.com/science/article/pii/S004578259601211X [16] 郭书祥, 吕震宙, 冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报, 2001, 18(1):56-60 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200101009.htmGuo Shuxiang, Lu Zhenzhou, Feng Yuansheng. A non-probabilistic model of structural reliability based on interval analysis. Chin J Comput Mech, 2001, 18(1): 56-60(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200101009.htm [17] 王晓军, 邱志平, 武哲.结构非概率集合可靠性模型.力学学报, 2007, 39(5):641-646 http://lxxb.cstam.org.cn/CN/abstract/abstract141628.shtmlWang Xiaojun, Qiu Zhiping, Wu Zhe. Nonprobabilistic set-based model for structural reliability. Chin J Theor App Mech, 2007, 39(5):641-646(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract141628.shtml [18] Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scare knowledge is present on acoustic excitation parameters. Comput Meth Appl Mech Eng, 1993, 104: 187-209 doi: 10.1016/0045-7825(93)90197-6 [19] 郭书祥, 吕震宙.结构可靠性分析的概率和非概率混合模型.机械强度, 2002, 24:524-526 http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200204011.htmGuo Shuxiang, Lu Zhenzhou. Hybrid probabilistic and non-probabilistic model of structural reliability. J Mech Strength, 2002, 24:524-526(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200204011.htm [20] 尼早, 邱志平.结构系统概率——模糊——非概率混合可靠性分析.南京航空航天大学学报, 2010, 42(3):272-277 http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201003003.htmNi Zao, Qiu Zhiping. Hybrid probabilistic fuzzy and non-probabilistic reliability analysis on structural system. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3):272-277(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201003003.htm [21] Du XP, Sudjianto A, Huang BQ. Reliability-based design with the mixture of random and interval variables//ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference (DETC2003), Chicago, IL, USA; 2005 [22] Du XP. Interval reliability analysis//ASME 2007 Design Engineering Technical Conference and Computers and Information in Engineering Conference (DETC2007), Las Vegas, NV, USA, 2007 [23] 程远胜, 钟玉湘, 曾广武.基于概率和非概率混合模型的结构鲁棒设计方法.计算力学学报. 2005, 22(4):501-505 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200504021.htmCheng Yuansheng, Zhong Yuxiang, Zeng Guangwu. Structural robust design based on hybrid probabilistic and non-probabilistic models. Chin J Comput Mech, 2005, 22(4):501-505(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200504021.htm [24] Luo YJ, Kang Z, Li A. Structural reliability assessment based on probability and convex set mixed model. Comput Struct, 2009, 87(21-22):1408-1415 doi: 10.1016/j.compstruc.2009.06.001 [25] Kang Z, Luo Y. Reliability-based structural optimization with probability and convex set hybrid models. Structural and Multidisciplinary Optimization, 2010, 42(1):89-102 doi: 10.1007/s00158-009-0461-6 [26] Jiang C, Lu GY, Han X, et al. A new reliability analysis method for uncertain structures with random and interval variables. Int J Mech Mater Des, 2012, 8(2):169-182 doi: 10.1007/s10999-012-9184-8 [27] Jiang C, Han X, Li WX, et al. A hybrid reliability approach based on probability and interval for uncertain structures. ASME J Mech Des, 2012, 134(3):1-11 http://materialstechnology.asmedigitalcollection.asme.org/article.aspx?articleid=1450768 [28] 姜潮, 郑静, 韩旭等.一种考虑相关性的概率——区间混合不确定模型及结构可靠性分析.力学学报, 2014, 46(4):591-600 http://lxxb.cstam.org.cn/CN/abstract/abstract144868.shtmlJiang Chao, Zheng Jing, Han Xu, et al. A probability and interval hybrid structural reliability analysis method considering parameters' correlation. Chin J Theor App Mech, 2014, 46(4):591-600(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract144868.shtml [29] Jiang C, Zheng J, Ni BY, et al. A probabilistic and interval hybrid reliability analysis method for structures with correlated uncertain parameters. International Journal of Computational Methods, 2015, 12(4):1540006, 24 doi: 10.1142/S021987621540006X [30] 韩文钦, 周金宇, 孙奎洲.失效模式相关的机械结构可靠性的Copula分析方法.中国机械工程学报, 2011, 22(3):278-282 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201103007.htmHan Wenqin, Zhou Jinyu, Sun Kuizhou. Copula analysis of structural systems reliability with correlated failure mode. Chinese Journal of Mechanical Engineering, 2011, 22(3):278-282(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201103007.htm [31] Adduri PR, Penmetsa RC. Bounds on structural system reliability in the presence of interval variables. Computers and Structures, 2007, 85(5-6):320-329 doi: 10.1016/j.compstruc.2006.10.012 [32] Qiu ZP, Yang D, Elishakoff I. Probabilistic interval reliability of structural systems. International Journal of Solids and Structures, 2008, 45(10):2850-2860 doi: 10.1016/j.ijsolstr.2008.01.005 [33] Wang J, Qiu ZP. The reliability analysis of probabilistic and interval hybrid structural system. Applied Mathematical Modelling, 2010, 34(11):3648-3658 doi: 10.1016/j.apm.2010.03.015 [34] Zhang Y, Der Kiureghian A. Two Improved Algorithms for Reliability Analysis, Reliability and Optimization of Structural Systems. Springer, 1995:297-304 doi: 10.1007/978-0-387-34866-7_32 [35] Yuan Y, Sun W. Optimization Theories and Methods. Beijing:Science Press, 1997 [36] 张明.结构可靠度分析-方法与程序.北京:科学出版社, 2009Zhang Ming. Structural Reliability Analysis:Methods and Procedures. Beijing:Science Press, 2009(in Chinese) [37] Schuëller GI. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, 1997, 12(4):197-321 doi: 10.1016/S0266-8920(97)00003-9 [38] 贡金鑫.工程结构可靠度计算方法.大连:大连理工大学出版社, 2003Gong Jinxin. Computational Methods for Reliability of Engineering Structures. Dalian:Dalian University of Technology Press, 2003(in Chinese) [39] Pandey M. An effective approximation to evaluate multinormal integrals. Structural Safety, 1998, 20(1):51-67 doi: 10.1016/S0167-4730(97)00023-4 [40] Genz A, Bretz F. Computation of Multivariate Normal and Probabilities. Berlin:Springer Science & Business Media, 2009 [41] Genz A. Numerical computation of multivariate normal probabilities. J Comput Graph Stat, 1992, 1(2):141-149 doi: 10.1080/10618600.1992.10477010 [42] Tang L, Melchers R. Improved approximation for multinormal integral. Structural Safety, 1986, 4(2):81-93 doi: 10.1016/0167-4730(86)90024-X [43] Sheng Z, Xie SQ, Pan C. Probability Theory and Mathematical Statistics. Beijing:China Higher Education Press, 2001. 129-131 [44] Hu Z, Du X. First order reliability method for time-variant problems using series expansions. Structural and Multidisciplinary Optimization, 2015, 51(1):1-21 doi: 10.1007/s00158-014-1132-9 [45] Huang ZL, Jiang C, Zhou YS, et al. Reliability-based design optimization for problems with interval distribution parameters. Structural and Multidisciplinary Optimization, 2016, 1:1-16 https://www.researchgate.net/profile/Jing_Zheng14/publication/304145220_Reliability-based_design_optimization_for_problems_with_interval_distribution_parameters/links/58114b8308aef2ef97b2dc05.pdf?origin=publication_list -