NEW SOURCE/SINK MODEL, FLOW SIMULATION AND PARAMETER OPTIMIZATION OF THE REGENERATOR FOR HIGH FREQUENCY PULSE TUBE REFRIGERATOR
-
摘要: 蓄冷器是脉冲管制冷机的一个关键部件,其工作性能将直接影响整机性能.针对工质在蓄冷器内交变流动的特性,提出了一个新的源/汇项模型来模拟蓄冷器内的流动与换热,同时模型也考虑了气固间的非热平衡.对于蓄冷器和换热器内的固体填料,在一些假定条件的基础上推导得到了固体物质的温度分布的解析解.该模型不需要建立固体的能量方程,减小了计算的工作量,避免了达西定律在高频下不适用的限制条件,并针对交变流动情况下对流换热系数的取值提出了解决方法.新模型的计算结果与实验结果符合良好,验证了模型的可靠性.进一步应用此模型分析了蓄冷器内部的热交换和制冷机理,并进行了蓄冷器的优化设计,对于不同目数,不同丝径,不同材料的丝网,进行了各种情况下蓄冷器的换热性能优化分析.Abstract: The regenerator filled with solid matrix is one of the major components in the PTC (pulse tube cryocooler). In this paper, a new source/sink model instead of porous medium assumption, which is merely applicable for low frequency apparatus, is established to simulate the flow and transport in the regenerator. The new model also is a non-thermal equilibrium model. Based on some assumptions, the analytic solution of the filled solid temperature can be obtained. The new model can reduce the computational workload because the model does not require the establishment of the energy equation of solid. We also propose a method to calculate the value of convective heat transfer coefficient under the alternating flow conditions. According to the comparison with the experimental data, the new model is verified. Then the model is used to analyze the heat transfer mechanism between the working fluids and the solid fillers in the regenerator.The regenerator heat transfer performance are optimized under different mesh screen geometries and properties with numerical simulation.
-
表 1 惯性管型脉冲管制冷机各部件尺寸
Table 1. Dimensions of ITPTR
表 3 不同热物性参数下的热穿透深度和制冷量
Table 3. Heat penetration and cooling capacity at different thermal-physical properties
表 4 不同回热器的参数
Table 4. Regenerator with different parameters
表 5 不同频率蓄冷器内单位质量工质的周期换热量
Table 5. Heat exchange per cycle of unit mass working gas under different frequencies in regenerator
-
[1] Gifford WE, Longsworth RC. Pulse tube refrigeration. Journal of Engineering for Industry (J Eng Ind), 1964, 86(3):264-268 doi: 10.1115/1.3670530 [2] Mikulin EI, Tarasov AA, Shrebyonock MP. Low-temperature expansion pulse tubes. Advances in Cryogenic Engineering (Adv Cryo Eng), 1984, 29:629-637 https://www.researchgate.net/publication/279993868_Low-Temperature_Expansion_Pulse_Tubes [3] Zhu SW, Wu PY, Chen ZQ, et al. A single stage double inlet pulse tube refrigerator capable of reaching 42K. Cryogenics, 1990, 30(Sup.):257-261 [4] Wang C, Wu P, Chen Z. Modified orifice pulse tube refrigerator without a reservoir. Cryogenics, 1994, 34(1):31-36 doi: 10.1016/0011-2275(94)90049-3 [5] Cai JH, Zhou Y, Wang JJ, et al. Experimental analysis of doubleinlet principle in pulse tube refrigerator. Cryogenics, 1993, 33(5): 522-525 doi: 10.1016/0011-2275(93)90248-M [6] Zhu SW, Zhou SL, Yoshimura N, et al. Phase shift effect of the long neck tube for the pulse tube refrigerator//Proceedings of the 9th international cryocoolers conference, New Hampshire, USA, June 25-27, 1997:269-278 [7] Wheatley J, Hofler T, Swift GW, et al. Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines. American Journal of Physics (Am J Phys), 1985, 53(2): 147-162 https://www.researchgate.net/publication/243490099_Understanding_some_simple_phenomena_in_thermoacoustics_with_applications_to_acoustical_heat_engines [8] Gifford WE, Longsworth RC. Surface heat pumping. Advances in Cryogenic Engineering (Adv Cryo Eng), 1966, 11:171-181 doi: 10.1007/978-1-4757-0522-5_18 [9] Liang JT, Ravex A, Rolland P. Study on pulse tube refrigeration part 1:thermodynamic non-symmetry effect. Cryogenics, 1996, 36(2): 87-93 doi: 10.1016/0011-2275(96)83808-2 [10] Swift G. Thermoacoustic engines. Journal of Acoustic Society of America, 1988, 88:1145-1180 [11] Radebaugh PS. Development and experimental test of an analysis model of the orifice pulse tube refrigerator. Advances in Cryogenic Engineering, 1987, 33:851-859 http://cn.bing.com/academic/profile?id=37c8567b037b9a73fd0a94cfa3385ee9&encoded=0&v=paper_preview&mkt=zh-cn [12] Pan CZ, Zhou Y, Wang JJ. CFD study of heat transfer for oscillating flow in helically coiled tube heat-exchanger. Computers and Chemical Engineering, 2014, 69:59-65 doi: 10.1016/j.compchemeng.2014.07.001 [13] Chen YY, Luo EC, Dai W. Heat transfer characteristics of oscillating flow regenerator filled with circular tubes or parallel plates. Cryogenics, 2007, 47:40-48 doi: 10.1016/j.cryogenics.2006.09.005 [14] Jensen JB, Engelbrecht K, Bahl CRH, et al. Modeling of parallelplate regenerators with non-uniform plate distributions. Int J Heat Mass Transf, 2010, 53:5065-5072 doi: 10.1016/j.ijheatmasstransfer.2010.07.058 [15] Jensen JB, Bahl CRH, Engelbrecht K, et al. Analysis of single blow effectiveness in non-uniform parallel plate regenerators. Int J Heat Mass Transf, 2011, 54:4746-4751 doi: 10.1016/j.ijheatmasstransfer.2011.05.031 [16] Kurzweg UH. Enhanced heat conduction in oscillating viscous flows within parallel-plate channels. J Fluid Mech, 1985, 156:291-300 doi: 10.1017/S0022112085002105 [17] Leong KC, Jin LW. Heat transfer of oscillating and steady flows in a channel filled with porous media. Int Comm Heat Mass Transfer, 2004, 31:63-72 doi: 10.1016/S0735-1933(03)00202-1 [18] Leong KC, Jin LW. An experimental study of heat transfer in oscillating flow through a channel filled with an aluminum foam. Int J Heat Mass Transf, 2005, 48:243-253 doi: 10.1016/j.ijheatmasstransfer.2004.08.025 [19] Ghafarian M, Mohebbi-Kalhori D, Sadegi J. Analysis Of heat transfer in oscillating flow through a channel filled with metal foam using computational fluid dynamics. Int J Therm Sci, 2013, 66:42-50 doi: 10.1016/j.ijthermalsci.2012.11.008 [20] Tong LS, London AL. Heat transfer and flow friction characteristics of woven-screen and crossed-rod matrixes. Trans ASME, 1957, 79: 1558-1570 https://www.researchgate.net/publication/235165892_Heat-Transfer_and_Flow-Friction_Characteristics_of_Woven-Screen_and_Crossed-Rod_Matrices [21] Muralidhar K, Suzuki K. Analysis of flow and heat transfer in a regenerator mesh using a non-Darcy thermally non-equilibrium model. Int J Heat Mass Transf, 2001, 44:2493-2504 doi: 10.1016/S0017-9310(00)00285-4 [22] Ravikumar KV, Matsubara Y. Experimental results of pulse tube cooler With inertance tube as phase shifter. Cryocoolers, 1999, 10: 291-298 doi: 10.1007/0-306-47090-X_34 [23] Bejan A. Entropy Generation Minimization:The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. CRC Press, 1996 [24] 陈灵, 张宇, 魏小林等.脉冲管制冷机的整机二维数值模拟.制冷学报, 2010, 31(5):5-10 http://www.cnki.com.cn/Article/CJFDTOTAL-ZLXB201005004.htmChen Ling, Zhang Yu, Wei Xiaolin, et al. Two-dimensional numerical simulation of entire pulse tube refrigerator. Journal of Refrigeration, 2010, 31(5):5-10(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZLXB201005004.htm [25] 高凡, 何雅玲, 刘迎文.交变流动下丝网回热器中压降特性的数值分析.工程热物理学报, 2008, 29(4):668-670 http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200804036.htmGao Fan, He Yaling, Liu Yingwen. Numerical analysis of pressure drop characteristic in mesh regenerator under oscillating flow. Journal of Engineering Thermophysics, 2008, 29(4):668-670(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200804036.htm [26] Chen LB, Jin H, Wang JJ, et al. 18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler. Cryogenics, 2013, 54: 54-58 doi: 10.1016/j.cryogenics.2012.11.002 [27] Chen LB, Zhou Q, Jin H, et al. 386 mW/20 K single-stage Stirlingtype pulse tube cryocooler. Cryogenics, 2013, 57:195-199 doi: 10.1016/j.cryogenics.2013.03.004 [28] Hu JY, Zhang LM, Zhu J, et al. A high-efficiency coaxial pulse tube cryocooler with 500 W cooling capacity at 80 K. Cryogenics, 2014, 62:7-10 doi: 10.1016/j.cryogenics.2014.03.010 [29] Thomas B, Pittman, D. Update on the evaluation of different correlations for the flow friction factor and heat transfer ofstirling engine regenerators//Proceedings of the 35th Intersociety Energy Conversion Engineering Conference and Exhibit. Las Vegas, USA, July 24-28, 2000:76-84 [30] Ju YL, Jiang Y, Zhou Y. Experimental study of the oscillating flow characteristics for a regenerator in a pulse tube cryocooler. Cryogenics, 1998, 38(6):649-656 doi: 10.1016/S0011-2275(98)00037-X [31] 居怀明.载热质热物性计算程序及数据手册.北京:原子能出版社, 1990 [32] 侯小锋. 大冷量高频脉冲管制冷机理论与试验研究. [博士论文]. 北京: 中国科学院理化技术研究所, 2007Hou Xiaofeng. Theoretical and experimental study of large cooling capacity high frequency pulse tube cryocoolers.[PhD Thesis]. Beijing:Institute of Physics and Chemistry, CAS. 2007(in Chinese) [33] Radebaugh R, Linenberger D, Voth RO. Methods for the measurement of regenerator ineffectiveness. NBS Special Publication, 1981 [34] 王少恒. 网格式回热器的传热特性分析与实验研究. [硕士论文]. 北京: 华北电力大学, 2012Wang Shaoheng. Investigation and experimental research on the heat transfer characteristics of the mesh regenerator matrix.[Master Thesis]. Beijing:North China Electric Power University, 2012(in Chinese) [35] 李卓裴, 甘智华, 陈杰等.液氦温区回热器高频损失特性研究.工程热物理学报, 2010, 31(9):1449-1452 http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201009005.htmLi Zhuopei, Gan Zhihua, Chen Jie, et al. Investigation of higrach frequency regenerator characteristics at liquid helium temperature. Journal of Engineering Thermophysics, 2010, 31(9):1449-1452(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201009005.htm [36] Nam K, Jeong S. Measurement of cryogenic regenerator characteristics under oscillating flow and pulsating pressure. Cryogenics, 2003, 43(10-11):575-581 doi: 10.1016/S0011-2275(03)00166-8 -