IMPLEMENTATION OF MULTI-TRANSMITTING BOUNDARY CONDITION FOR WAVE MOTION SIMULATION BY SPECTRAL ELEMENT METHOD: ONE DIMENSION CASE
-
摘要: 多次透射公式(multi-transmitting formula,MTF)是一种具有普适性的局部人工边界条件,但其在近场波动数值模拟中一般与有限元法结合.由于波动谱元模拟的数值格式与有限元格式有极大的不同,传统的MTF在谱元离散格式中无法直接实现.为了使物理概念清楚、精度可控的多次透射人工边界条件能够适应波动谱元模拟的需求,首先指出多次透射边界与谱元离散格式结合的基本问题,并分析了空间内插和时间内插两种方案的可行性.然后从空间内插角度出发,提出基于拉格朗日多项式插值模式的MTF谱元格式,并采用一种简单内插方法实现高阶MTF.最后通过一维波动数值试验检验这些MTF谱元格式的精度,并讨论其数值稳定性.结果表明:对于一、二阶MTF,几种格式的精度相当;对于三、四阶MTF,基于谱单元位移模式插值的格式精度最高.相反,随着插值多项式阶次的升高,不同MTF格式的稳定临界值逐步降低,但是所有格式均在人工波速大大超过物理波速时才可能发生失稳.Abstract: Multi-transmitting formula (MTF) is considered to be a universal local artificial boundary condition, which is generally employed in finite element simulation of near-field wave motion. Due to the great difference between spectral element method (SEM) and finite element method (FEM), the traditional numerical scheme of MTF cannot be simply adopted in SEM without any change. In order to make use of the advantages of MTF, i.e., clear physical mechanism and controllable accuracy, basic problems involved in the combination of MTF and SEM are discussed in this paper, then the feasibility of spatial or temporal interpolation schemes are investigated, respectively. From the view of spatial interpolation scheme, a set of numerical formulas of MTF based on Lagrange polynomial are proposed, where the higherorder MTF is implemented via a simple iteration process. The accuracy and stability of the above MTF schemes are examined by a standard 1-D spectral element model of wave motion. The numerical results show that all schemes have comparable accuracy for 1st-and 2nd-order MTF, and the MTF scheme based on spectral element displacement mode is superior to others for 3rd-or 4th-order MTF. On the contrary, the stability threshold descends with the growth of interpolation polynomials' order of different MTF schemes, but instabilities only occur under the unusual condition that artificial wave speed is far beyond the physical wave speed.
-
表 1 LSEM在参考单元上的节点坐标
Table 1. Node coordinates of LSEM in reference element
表 2 不同MTF谱元格式的稳定临界值 (一维波动)
Table 2. Stability thresholds of several MTF spectral element schemes (1-D wave motion)
-
[1] 廖振鹏.工程波动理论导论.第二版.北京:科学出版社, 2002Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering (second edition). Beijing:Science Press, 2002(in Chinese) [2] 廖振鹏.近场波动的数值模拟.力学进展, 1997, 27(2):193-216 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ702.004.htmLiao Zhenpeng. Numerical simulation of near-field wave motion. Advances in Mechanics, 1997, 27(2):193-216(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ702.004.htm [3] Chen YS, Yang GW, Ma X, et al. A time-space domain stereo finite difference method for 3D scalar wave propagation. Computers & Geosciences, 2016, 96:218-235 http://www.sciencedirect.com/science/article/pii/S0098300416302606 [4] Liu SL, Li XF, Wang WS, et al. A mixed-grid finite element method with PML absorbing boundary conditions for seismic wave modelling. Journal of Geophysics & Engineering, 2014, 11(5):1-13 doi: 10.1088/1742-2132/11/5/055009/meta [5] 曹丹平, 周建科, 印兴耀.三角网格有限元法波动模拟的数值频散及稳定性研究.地球物理学报, 2015, 58(5):1717-1730 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505022.htmCao Danping, Zhou Jianke, Yin Xingyao. The study for numerical dispersion and stability of wave motion with triangle-based finite element algorithm. Chinese Journal of Geophysics, 2015, 58(5):1717-1730(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505022.htm [6] Canuto C, Hussaini MY, Quarteroni A, et al. Spectral Methods:Fundamentals in Single Domains. Berlin:Springer, 2006 [7] Patera AT. A spectral element method for fluid dynamics:laminar flow in a channel expansion. Journal of Computational Physics, 1984, 54(3):468-488 doi: 10.1016/0021-9991(84)90128-1 [8] Seriani G, Su C. Wave propagation modeling in highly heterogeneous media by a ploy-grid Chebyshev spectral element method. Journal of Computational Physics, 2012, 20(2):345-351 https://www.researchgate.net/publication/263880974_Wave_propagation_modeling_in_highly_heterogeneous_media_by_a_poly-grid_Chebyshev_spectral_element_method [9] 林灯, 崔涛, 冷伟等.一种求解地震波方程的高效并行谱元格式.计算机研究与发展, 2016, 53(5):1147-1155 http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201605020.htmLin Deng, Cui Tao, Leng Wei, et al. An efficient parallel spectral element scheme for solving seismic wave equation. Journal of Computer Research and Development, 2016, 53(5):1147-1155(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201605020.htm [10] Priolo E, Seriani G. A numerical investigation of Chebyshev spectral element method for acoustic wave propagation//Proceedings of the 13th IMACS Conference on Comparative Applied Mathematics, Dublin, Ireland, 1991, 2:551-556 [11] Seriani G, Priolo E. Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elements in Analysis and Design, 1994, 16(3):337-348 http://www.wenkuxiazai.com/doc/b041b98ce2bd960591c6774a.html [12] Seriani G. A parallel spectral element method for acoustic wave modeling. Journal of Computational Acoustics, 1997, 5(1):53-69 doi: 10.1142/S0218396X97000058 [13] Komatitsch D, Vilotte JP. The spectral element method:an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 1998, 88(2):368-392 https://www.researchgate.net/publication/232707622_The_Spectral_Element_method_an_efficient_tool_to_simulate_the_seismic_response_of_2D_and_3D_geological_structures [14] Komatitsch D, Liu QY, Tromp J, et al. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bulletin of the Seismological Society of America, 2004, 94(1):187-206 doi: 10.1785/0120030077 [15] Komatitsch D, Tsuboi S, Tromp J. The spectral-element method in seismology. Seismic Earth:Array Analysis of Broadband Seismograms. American Geophysical Union, 2005:205-227 [16] 王秀明, Seriani G, 林伟军.利用谱元法计算弹性波场的若干理论问题.中国科学:G辑, 2007, 37(1):1-19 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200701005.htmWang Xiuming, Seriani G, Lin Weijun. Several theoretic aspects for the calculation of elastic wave field using spectral element method. Science China (G Series), 2007, 37(1):1-19(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200701005.htm [17] 严珍珍, 张怀, 杨长春等.汶川大地震地震波传播的谱元法数值模拟研究.中国科学:D辑, 2009, 39(4):393-402 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904002.htmYan Zhenzhen, Zhang Huai, Yang Changchun, et al. Numerical investigation of seismic wave propagation of Wenchuan Earthquake using spectral element method. Science China (D Series), 2009, 39(4):393-402(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904002.htm [18] 李洪建, 韩立国, 巩向博.复杂构造网格化及高精度地震波场谱元法数值模拟.石油物探, 2014, 53(4):375-383 http://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201404005.htmLi Hongjian, Han Liguo, Gong Xiangbo. High precision spectral element method based on grid discretization of complicated structure for seismic wavefield numerical simulation. Geophysical Prospecting for Petroleum, 2014, 53(4):375-383(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201404005.htm [19] 李琳, 刘韬, 胡天跃.三角谱元法及其在地震正演模拟中的应用.地球物理学报, 2014, 57(4):1224-1234 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404019.htmLi Lin, Liu Tao, Hu Tianyue. Spectral element method with triangular mesh and its application in seismic modeling. Chinese Journal of Geophysics, 2014, 57(4):1224-1234(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404019.htm [20] 李孝波. 基于谱元法的玉田震害异常研究. [博士论文]. 哈尔滨: 中国地震局工程力学研究所, 2014Li Xiaobo. The investigation of seismic damage anomaly in Yutian based on spectral element method.[PhD Thesis]. Harbin:Institute of Engineering Mechanics, Chinese Earthquake Administration, 2014(in Chinese) [21] 李孝波, 薄景山, 齐文浩等.地震动模拟中的谱元法.地球物理学进展, 2014, 29(5):2029-2039 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405006.htmLi Xiaobo, Bo Jingshan, Qi Wenhao, et al. Spectral element method in seismic ground motion simulation. Progress in Geophysics, 2014, 29(5):2029-2039(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405006.htm [22] Liu YS, Teng JW, Lan HQ, et al. A comparative study of finite element and spectral element methods in seismic wavefield modeling. Geophysics, 2014, 79(2):T91-T104 doi: 10.1190/geo2013-0018.1 [23] He CH, Wang JT, Zhang CH. Nonlinear spectral-element method for 3D seismic-wave propagation. Bulletin of the Seismological Society of America, 2016, 106(3):1074-1087 doi: 10.1785/0120150341 [24] Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 1969, 95(4):859-878 [25] Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540 http://www.sciencedirect.com/science/article/pii/002199919290016R [26] Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2):185-200 doi: 10.1006/jcph.1994.1159 [27] Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 2003, 154(1):146-153 doi: 10.1046/j.1365-246X.2003.01950.x [28] 廉西猛, 单联瑜, 隋志强.地震正演数值模拟完全匹配层吸收边界条件研究综述.地球物理学进展, 2015, 30(4):1725-1733 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504027.htmLian Ximeng, Shan Lianyu, Sui Zhiqiang. An overview of research on perfectly matched layers absorbing boundary condition of seismic forward numerical simulation. Progress in Geophysics, 2015, 30(4):1725-1733(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504027.htm [29] Xie ZN, Matzen R, Cristini P, et al. A perfectly matched layer for fluid-solid problems:Application to ocean-acoustics simulations with solid ocean bottoms. Journal of the Acoustical Society of America, 2016, 140(1):165-175 doi: 10.1121/1.4954736 [30] He Y, Min MS, Nicholls D P. A spectral element method with transparent boundary condition for periodic layered media scattering. Journal of Scientific Computing, 2016, 68(2):772-802 doi: 10.1007/s10915-015-0158-5 [31] 廖振鹏, 黄孔亮, 杨柏坡等.暂态波透射边界.中国科学:A辑, 1984, 6:556-564 http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198406007.htmLiao Zhenpeng, Huang Kongliang, Yang Baipo, et al. A transmitting boundary for transient wave. Scientia Sinica (Series A), 1984, 6:556-564(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198406007.htm [32] Liao ZP, Wong HL. A transmitting boundary for the numerical simulation of elastic wave propagation. International Journal of Soil Dynamics and Earthquake Engineering, 1984, 3(4):174-183 doi: 10.1016/0261-7277(84)90033-0 [33] 戴志军, 李小军, 侯春林.谱元法与透射边界的配合使用及其稳定性研究.工程力学, 2015, 32(11):40-50 http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201511007.htmDai Zhijun, Li Xiaojun, Hou Chunlin. A combination usage of transmitting formula and spectral element method and the study of its stability. Engineering Mechanics, 2015, 32(11):40-50(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201511007.htm [34] Cohen GC. Higher-order Numerical Methods for Transient Wave Equations. Berlin:Springer, 2002 [35] 关慧敏, 廖振鹏.局部透射边界和叠加边界的精度分析与比较.力学学报, 1994, 26(3):303-311 http://lxxb.cstam.org.cn/CN/abstract/abstract140309.shtmlGuan Huimin, Liao Zhenpeng. A comparison between the discrete local transmitting boundary and the superposition boundary in wave propagation. Acta Mechanica Sinica, 1994, 26(3):303-311(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract140309.shtml [36] 景立平, 吴照营, 邹经相.近场波动数值模拟稳定性问题分析.地震工程与工程振动, 2002, 22(2):17-21 http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200202002.htmJing Liping, Wu Zhaoying, Zou Jingxiang. Stability analysis of numerical simulation of near-field wave motion. Earthquake Engineering and Engineering Vibration, 2002, 22(2):17-21(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200202002.htm [37] 景立平.多次透射公式实用形式稳定性分析.地震工程与工程振动, 2004, 24(4):20-24 http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200404004.htmJing Liping. Stability analysis of practical formula for multi-transmitting boundary. Earthquake Engineering and Engineering Vibration, 2004, 24(4):20-24(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200404004.htm [38] Liao ZP, Liu JB. Numerical instabilities of a local transmitting boundary. Earthquake Engineering and Structural Dynamics, 1992, 21(1):65-77 doi: 10.1002/(ISSN)1096-9845 [39] 关慧敏, 廖振鹏.局部人工边界稳定性的一种分析方法.力学学报, 1996, 28(3):376-380 http://lxxb.cstam.org.cn/CN/abstract/abstract140102.shtmlGuan Huimin, Liao Zhenpeng. A method for the stability analysis of local artificial boundaries. Acta Mechanica Sinica, 1996, 28(3):376-380(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract140102.shtml [40] 关慧敏, 廖振鹏.时域局部人工边界的稳定性分析方法概述.世界地震工程, 1997, 13(2):1-7 http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC702.000.htmGuan Huimin, Liao Zhenpeng. A summary on the methods for the stability analysis of artificial local boundaries in time domain. World Information on Earthquake Engineering, 1997, 13(2):1-7(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SJDC702.000.htm [41] 廖振鹏, 周正华, 张艳红.波动数值模拟中透射边界的稳定实现.地球物理学报, 2002, 45(4):533-545 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200204010.htmLiao Zhenpeng, Zhou Zhenghua, Zhang Yanhong. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics, 2002, 45(4):533-545(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200204010.htm [42] 杨宇, 李小军, 贺秋梅等.散射问题中消除多次透射边界高频振荡失稳措施比较分析.地震工程学报, 2014, 36(3):476-481 http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403010.htmYang Yu, Li Xiaojun, He Qiumei, et al. Comparison of measures for eliminating high-frequency instability of a multi-transmitting boundary in scattering problems. China Earthquake Engineering Journal, 2014, 36(3):476-481(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403010.htm [43] 谢志南, 廖振鹏.透射边界高频失稳机理及其消除方法——SH波动.力学学报, 2012, 44(4):745-752 http://lxxb.cstam.org.cn/CN/abstract/abstract143484.shtmlXie Zhinan, Liao Zhenpeng. Mechanism of high frequency instability caused by transmitting boundary and method of its elimination——SH wave. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):745-752(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract143484.shtml [44] Zhang L, Yu TB. A method of improving the stability of Liao's higher-order absorbing boundary condition. Progress in Electromagnetics Research M, 2012, 27:167-178 doi: 10.2528/PIERM12092815 [45] 章旭斌, 廖振鹏, 谢志南.透射边界高频耦合失稳机理及稳定实现——SH波动.地球物理学报, 2015, 58(10):3639-3648 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510017.htmZhang Xubin, Liao Zhenpeng, Xie Zhinan. Mechanism of high frequency coupling instability and stable implementation for transmitting boundary——SH wave motion. Chinese Journal of Geophysics, 2015, 58(10):3639-3648(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510017.htm [46] 谢志南, 廖振鹏.人工边界高频振荡失稳机理的一点注记.地震学报, 2008, 30(3):302-306 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200803009.htmXie Zhinan, Liao Zhenpeng. A note for the mechanism of high frequency instability induced by absorbing boundary conditions. Acta Seismologica Sinica, 2008, 30(3):302-306(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200803009.htm -