[1] |
Birkhoff GD. Dynamical Systems. Providence:AMS College Publisher, 1927
|
[2] |
Zhang HB, Chen LQ, Gu SL, et al. The discrete variational principle and the first integrals of Birkhoff systems. Chinese Physics B, 2007, 16(3):582-587 doi: 10.1088/1009-1963/16/3/004
|
[3] |
张永发, 梅凤翔. Birkhoff系统动力学逆问题的两种提法和解法. 北京理工大学学报, 1996, 16(4):352-356 http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG604.001.htmZhang Yongfa, Mei Fengxiang. Two ways of formulation and solutions of the inverse problem of the dynamics of birkhoffian system. Transactions of Beijing Institute of Technology, 1996, 16(4):352-356(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG604.001.htm
|
[4] |
傅景礼, 陈立群, 薛纭等. 相对论Birkhoff系统的平衡稳定性. 物理学报, 2002, 51(12):2683-2689 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200212003.htmFu Jingli, Chen Liqun, Xue Yun, et al. Stability of the equilibrium state in relativistic Birkhoff systems. Acta Physica Sinica, 2002, 51(12):2683-2689(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200212003.htm
|
[5] |
张毅. 相对论性力学系统的Birkhoff对称性与守恒量. 物理学报, 2012, 61(21):214501 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201221044.htmZhang Yi. Symmetry of Birkhoffians and conserved quantity for a relativistic mechanical system. Acta Phys Sin, 2012, 61(21):214501(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201221044.htm
|
[6] |
梅凤翔. Birkhoff系统的Noether理论. 中国科学(A辑), 1993, 23(7):709-717 http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK199307005.htmMei Fengxiang. Noether theory of Birkhoff system. Scientia Sinica (Series A), 1993, 23(7):709-717(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK199307005.htm
|
[7] |
梅凤翔, 解加芳, 冮铁强. 广义Birkhoff系统动力学的一类逆问题. 物理学报, 2008, 57(8):4649-4651 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200808003.htmMei Fengxiang, Xie Jiafang, Gang Tieqiang. An inverse problem of dynamics of a generalized Birkhoff system. Acta Physica Sinica, 2008, 57(8):4649-4651(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200808003.htm
|
[8] |
葛伟宽, 梅凤翔. 广义Birkhoff系统的时间积分定理. 物理学报, 2009, 58(2):699-702 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200902003.htmGe Weikuan, Mei Fengxiang. Time-integral theorems for generalized Birkhoff system. Acta Physica Sinica, 2009, 58(2):699-702(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200902003.htm
|
[9] |
Li YM. Lie symmetries, perturbation to symmetries and adiabatic invariants of a generalized Birkhoff system. Chinese Physics Letters, 2010, 27(1):010202 doi: 10.1088/0256-307X/27/1/010202
|
[10] |
张毅. 自治广义Birkhoff系统的平衡稳定性. 物理学报, 2010, 59(1):20-24 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201001005.htmZhang Yi. Stability of equilibrium for the autonomous generalized Birkhoffian system. Acta Physica Sinica, 2010, 59(1):20-24(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201001005.htm
|
[11] |
Hirsch MW, Smale S. Differential Equations, Dynamical System, and Liner Algebra. New York:Academic Press, 1974
|
[12] |
McLachlan RI, Quispel GRW, Robidoux N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society A, 1999, 357(1754):1021-1045 doi: 10.1098/rsta.1999.0363
|
[13] |
楼智美, 梅凤翔.力学系统的二阶梯度表示. 物理学报, 2012, 61(2), 024502 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201202051.htmLou Zhimei, Mei Fengxiang. A second order gradient representation of mechanics system. Acta Physica Sinica, 2012, 61(2), 024502(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201202051.htm
|
[14] |
Chen XW, Zhao GL, Mei FX. A fractional gradient representation of the Poincaré equations. Nonlinear Dynamics, 2013, 73(1):579-582 http://cn.bing.com/academic/profile?id=9bf482cc7ec47bfabd1b08561fec5572&encoded=0&v=paper_preview&mkt=zh-cn
|
[15] |
梅凤翔, 吴惠彬. 一阶Lagrange系统的梯度表示. 物理学报, 2013, 62(21):214501 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201321031.htmMei Fengxiang, Wu Huibin. A gradient representation of first-order Lagrange system. Acta Physica Sinica, 2013, 62(21):214501(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201321031.htm
|
[16] |
Mei FX, Wu HB. Skew-gradient representation of generalized Birkhoffian system. Chinese Physics B, 2015, 24(10):104502 doi: 10.1088/1674-1056/24/10/104502
|
[17] |
梅凤翔, 吴惠彬. 广义Birkhoff系统与一类组合梯度系统. 物理学报, 2015, 64(18), 184501 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201518036.htmMei Fengxiang, Wu Huibin. Generalized Birkhoff system and a kind of combined gradient system. Acta Physica Sinica, 2015, 64(18):184501(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201518036.htm
|
[18] |
吴惠彬, 梅凤翔. 事件空间中完整力学系统的梯度表示. 物理学报, 2015, 64(23):0234501 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201523022.htmWu Huibin, Mei Fengxiang. A gradient representation of holonomic system in the event space. Acta Physica Sinica, 2015, 64(23):0234501(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201523022.htm
|
[19] |
Mei FX, Wu HB. Two kinds of generalized gradient representations for holonomic mechanical systems. Chinese Physics B, 2016, 25(1):014502 doi: 10.1088/1674-1056/25/1/014502
|
[20] |
Chen XW, Zhang Y, Mei FX. An application of a combined gradient system to stabilize a mechanical system. Chinese Physics B, 2016, 25(10):100201 doi: 10.1088/1674-1056/25/10/100201
|
[21] |
Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Singapore:Elsevier, 2008
|
[22] |
梅凤翔. 关于梯度系统. 力学与实践, 2012, 34:89-90 http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201201021.htmMei Feng- xiang. On gradient system. Mechanics in Engineering, 2012, 34:89-90(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201201021.htm
|
[23] |
梅凤翔. 分析力学下卷. 北京:北京理工大学出版社, 2013Mei Fengxiang. Analytical Mechanics Ⅱ. Beijing:Beijing Institute of Technology Press, 2013(in Chinese)
|
[24] |
Tomáš B, Ralph C, Eva F. Every ordinary differential equation with a strict Lyapunov function is a gradient system. Monatsh Math, 2012, 166:57-72 doi: 10.1007/s00605-011-0322-4
|
[25] |
Marin AM, Ortiz RD, Rodriguez JA. A generalization of a gradient System. International Mathematical Forum, 2013, 8:803-806 doi: 10.12988/imf.2013.13085
|
[26] |
陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton系统稳定性的影响. 应用数学和力学, 2014, 35(12):1392-1397 http://youxian.cnki.com.cn/yxdetail.aspx?filename=YYSX20141209006&dbname=CAPJ2014Chen Xiangwei, Li Yanmin, Mei Fengxiang. Dependance of stability of equilibrium of generalized Hamilton system on two parameters. Applied Mathematics and Mechanics, 2014, 35(12):1392-1397(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=YYSX20141209006&dbname=CAPJ2014
|
[27] |
梅凤翔, 吴惠彬. 广义Birkhoff系统的梯度表示. 动力学与控制学报, 2012, 10(4):289-292 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201204004.htmMei Fengxiang, Wu Huibin. A gradient representation for generalized Birkhoff system. J of Dynam and Control, 2012, 10(4):289-292(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201204004.htm
|
[28] |
梅凤翔, 吴惠彬. 广义Hamilton系统与梯度系统. 中国科学:物理学力学天文学, 2013, 43(4):538-540 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201304023.htmMei Fengxiang, Wu Huibin. Generalized Hamilton system and gradient system. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(4):538-540(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201304023.htm
|
[29] |
Lin L, Luo SK. Fractional generalized Hamiltonian mechanics. Acta Mechanica, 2013, 224(8):1757-1771 doi: 10.1007/s00707-013-0826-1
|
[30] |
Luo SK, He JM, Xu YL. Fractional Birkhoffian method for equilibrium stability of dynamical systems. International Journal of Non-Linear Mechanics, 2016, 78(1):105-111 http://cn.bing.com/academic/profile?id=268df915f32aad53e127d2647a7d1497&encoded=0&v=paper_preview&mkt=zh-cn
|
[31] |
陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示. 力学学报, 2016, 48(3):684-691 http://lxxb.cstam.org.cn/CN/abstract/abstract145839.shtmlChen Xiangwei, Cao Qiupeng, Mei Fengxiang. Generalized gradient representation of nonholonomic system of Chetaev's type. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):684-691(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145839.shtml
|
[32] |
梅凤翔, 吴惠彬. 约束力学系统的梯度表示(上下). 北京:科学出版社, 2016Mei Fengxiang, Wu Huibin. Gradient Representations of Constrained Mechanical System Vol 1,2. Beijing:Science Press, 2016(in Chinese)
|
[33] |
梅凤翔. 广义Birkhoff系统动力学. 北京:科学出版社, 2013Mei Fengxiang. Dynamics of Generalized Birkhoff System. Beijing:Science Press, 2013(in Chinese)
|