[1] |
Brenan KE, Campbell SL, Petzold LR. Numerical Solution of Initial- Value Problems in Differential Algebraic Equations. 2nd edn. Philadelphia:SIAM, 1996
|
[2] |
潘振宽, 赵维加, 洪嘉振等. 多体系统动力学微分/代数方程组数值方法. 力学进展, 1996, 26(1):28-40 http://www.cnki.com.cn/Article/CJFDTOTAL-QDDD199601013.htmPan Zhenkuan, Zhao Weijia, Hong Jiazhen, et al. On numerical algorithms for differential/algebraic equations of motion of multibody systems. Advances in Mechanics, 1996, 26(1):28-40(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-QDDD199601013.htm
|
[3] |
王琪, 陆启韶. 多体系统Lagrange方程数值算法的研究进展. 力学进展, 2001, 31(1):9-17 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200101001.htmWang Qi, Lu Qishao. Advances in the numerical methods for Lagrange's equations of multibody systems. Advances in Mechanics, 2001, 31(1):9-17(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200101001.htm
|
[4] |
赵维加, 潘振宽. 多体系统Euler-Lagrange方程的最小二乘法与违约修正. 力学学报, 2002, 34(4):594-603 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200204013.htmZhao Weijia, Pan Zhenkuan. Least square algorithms and constraint stabilization for Euler-Lagrange equations of multibody system dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34(4):594-603(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200204013.htm
|
[5] |
Bauchau OA, Laulusa A. Review of contemporary approaches for constraint enforcement in multibody systems. ASME Journal of Computational and Nonlinear Dynamics, 2008, 3(1):11005 doi: 10.1115/1.2803258
|
[6] |
Arnold M. DAE aspects of multibody system dynamics. Report No. 01. Martin-Luther-Universität Halle-Wittenberg, 2016
|
[7] |
Simeon B. Computational Flexible Multibody Dynamics:A Differential- Algebraic Approach. Berlin Heidelberg:Springer-Verlag, 2013
|
[8] |
Negrut D, Jay LO, Khude N. A discussion of low order numerical integration formulas for rigid and flexible multibody dynamics. ASME Journal of Computational and Nonlinear Dynamics, 2009, 4(2):21008 doi: 10.1115/1.3079784
|
[9] |
Negrut D, Rampalli R, Ottarsson G, et al. On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. ASME Journal of Computational and Nonlinear Dynamics, 2007, 2:73-85 doi: 10.1115/1.2389231
|
[10] |
丁洁玉, 潘振宽. 多体系统动力学刚性方程广义α投影法. 中国科学:物理学 力学 天文学. 2013, 43(4):572-578 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201304028.htmDing Jieyu, Pan Zhenkuan. Generalized-α projection method for stiff dynamic equations of multibody systems. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(4):572-578(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201304028.htm
|
[11] |
姚廷强, 迟毅林, 黄亚宇. 柔性多体系统动力学新型广义α数值分析方法. 机械工程学报, 2009, 45(10):53-60 doi: 10.3901/JME.2009.10.053Yao Tingqiang, Chi Yilin, Huang Yayu. New generalized-α algorithms for multibody dynamics. Journal of Mechanical Engineering, 2009, 45(10):53-60(in Chinese) doi: 10.3901/JME.2009.10.053
|
[12] |
丁洁玉, 潘振宽. 多体系统动力学微分-代数方程广义α投影法. 工程力学, 2013, 30(4):380-384 http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304055.htmDing Jieyu, Pan Zhenkuan. Generalized-α projection method for differential-algebraic equations of multibody dynamics. Engineering Mechanics, 2013, 30(4):380-384(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304055.htm
|
[13] |
马秀腾, 翟彦博, 罗书强. 基于θ1方法的多体动力学数值算法研究. 力学学报, 2011, 43(5):931-938 http://lxxb.cstam.org.cn/CN/abstract/abstract142692.shtmlMa Xiuteng, Zhai Yanbo, Luo Shuqiang. Numerical method of multibody dynamics based on θ1 method. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):931-938(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract142692.shtml
|
[14] |
马秀腾, 翟彦博, 罗书强. 多体动力学超定运动方程广义α求解新算法. 力学学报, 2012, 44(5):948-952 http://lxxb.cstam.org.cn/CN/abstract/abstract143674.shtmlMa Xiuteng, Zhai Yanbo, Luo Shuqiang. New generalized-α method for over-determined motion equations in multibody dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5):948-952(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract143674.shtml
|
[15] |
Jay LO, Negrut D. A second order extension of the generalized-α method for constrained systems in mechanics//Bottasso C L, ed. Multibody Dynamics:Computational Methods and Applications, Springer Science & Business Media B.V. 2009. 143-158
|
[16] |
Lunk C, Simeon B. Solving constrained mechanical systems by the family of Newmark and α-methods. ZAMM, 2006, 86(10):772-784 doi: 10.1002/(ISSN)1521-4001
|
[17] |
刘颖, 马建敏. 多体系统动力学方程的基于离散零空间理论的Newmark积分算法. 机械工程学报, 2012, 48(5):87-91 doi: 10.3901/JME.2012.05.087Liu Ying, Ma Jianmin. Discrete null space method for the Newmark integration of multibody dynamic systems. Journal of Mechanical Engineering, 2012, 48(5):87-91(in Chinese) doi: 10.3901/JME.2012.05.087
|
[18] |
Orlandea NV. Multibody systems history of ADAMS. ASME Journal of Computational and Nonlinear Dynamics, 2016, 11(6):60301 doi: 10.1115/1.4034296
|
[19] |
Gear CW, Gupta GK, Leimkuhler B. Automatic integration of Euler-Lagrange equations with constraints. Journal of Computational and Applied Mathematics, 1985, 12 & 13:77-90 http://cn.bing.com/academic/profile?id=c71b60b05b640d28c7818eaa4545e1aa&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Arnold M, Hante S. Implementation details of a generalized-α DAE Lie group method. ASME Journal of Computational and Nonlinear Dynamics, 2016, 12(2):021002 doi: 10.1115/1.4033441
|
[21] |
Arnold M, Cardona A, Brüls O. A Lie algebra approach to Lie group time integration of constrained systems//Betsch P, ed. Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics. Switzerland:Springer International Publishing, 2016:91-158
|
[22] |
陈立平, 张云清, 任卫群等. 机械系统动力学分析及ADAMS应用教程. 北京:清华大学出版社, 2005Chen Liping, Zhang Yunqing, Ren Weiqun, et al. Dynamic Analysis of Mechanical Systems and ADAMS Application. Beijing:Tsinghua University Press, 2005(in Chinese)
|
[23] |
Shampine LF, Reichelt MW, Kierzenka JA. Solving index-1 DAEs in MATLAB and Simulink. SIAM Review, 1999, 42(3):538-552 http://cn.bing.com/academic/profile?id=3d212205dcbea8df1f6815abb4a22b3f&encoded=0&v=paper_preview&mkt=zh-cn
|
[24] |
Yoon S, Howe RM, Greenwood DT. Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. ASME Journal of Mechanical Design, 1994, 116(4):1058-1064 doi: 10.1115/1.2919487
|
[25] |
Yu Q, Cheng I. A direct violation correction method in numerical simulation of constrained multibody systems. Computational Mechanics, 2000, 26:52-57 doi: 10.1007/s004660000149
|
[26] |
于清, 洪嘉振. 受约束多体系统一种新的违约校正方法. 力学学报, 1998, 30(3):300-306 http://lxxb.cstam.org.cn/CN/abstract/abstract139888.shtmlYu Qing, Hong Jiazhen. A new violation correction method for constraint multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3):300-306(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract139888.shtml
|
[27] |
Nikravesh PE. Initial condition correction in multibody dynamics. Multibody System Dynamics, 2007, 18(1):107-115 doi: 10.1007/s11044-007-9069-z
|
[28] |
Marques F, Souto AP, Flores P. On the constraints violation in forward dynamics of multibody systems. Multibody System Dynamics, online. DOI:10.1007/s11044-016-9530-y. 2016
|
[29] |
Flores P. A new approach to eliminate the constraints violation at the position and velocity levels in constrained mechanical multibody systems//Flores P, Viadero F, eds. New Trends in Mechanism and Machine Science, 5th European Conference on Mechanism Science, Guimaraes, Portugal, September 16-20, 2014. Switzerland:Springer International Publishing, 2015. 385-393
|
[30] |
Gear CW. Differential-algebraic equation index transformations. SIAM Journal on Scientific and Statistical Computing, 1988, 9(1):39-47 doi: 10.1137/0909004
|
[31] |
Bottasso CL, Bauchau OA, Cardona A. Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM Journal on Scientific Computing, 2007, 29(1):397-414 doi: 10.1137/050638503
|
[32] |
Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numerica, 2001, 10:357-514 doi: 10.1017/S096249290100006X
|