INTEGRATED LAYOUT AND TOPOLOGY OPTIMIZATION DESIGN OF PIEZOELECTRIC SMART STRUCTURE IN ACCURATE SHAPE CONTROL
-
摘要: 智能结构集智能材料与传统材料于一体,能够实现结构的主动控制,在航空航天等领域具有巨大的应用潜力.由于其系统复杂且具有多场耦合效应,智能结构的整体式优化设计方法成为结构控制技术研究的关键之一.为了提高压电智能结构的整体性能和变形精度,提出了同时考虑压电驱动器布局(分布位置及角度)和基体结构拓扑构型的协同优化设计新方法.采用多点约束方法(multi-point constraints,MPC)建立压电驱动器和基体结构的连接,定义一种与测量点目标位移相关的权重函数,以实现结构的精确变形控制.通过协同优化设计,压电驱动器可以获得最优的分布位置及角度,同时基体结构获得最优的拓扑构型,从而提升了压电智能结构系统的整体驱动性能和变形精度.通过进一步分析,研究了精确变形、体分比约束与结构优化构型和整体刚度的关系,以及优化结果中可能存在的传力路径畸变现象.数值算例的设计结果表明,采用协同优化设计方法,能够扩大结构的寻优空间,有效减小变形误差,实现压电智能结构的精确变形控制.Abstract: Smart structures are those equipped with sensors/actuators made of smart materials, which have the capability to control structure movement in such a way that makes the design more efficient. However, due to systematic complexity and multidisciplinary objectives, the optimization design of such structures in accurate shape control becomes very challenging. This paper proposes an integrated layout and topology optimization design method for accurate shape control of smart structures with surface bonded piezoelectric actuators. The multi-point constraints (MPC) method is used to simulate the bonding connections between movable piezoelectric actuators and host supporting structures. A new weighted shape error function based on desired deflections of observation points is defined to fulfill accurate shape control of piezoelectric smart structure. Through the proposed method, the optimal position and orientation of each piezoelectric actuator as well as the topology configuration of host supporting structure are founded, which significantly improves the systematic actuating and morphing performance of piezoelectric smart structures. Further studies on the relationships of structural stiffness with shape morphing constraint and volume fraction constraint are carried out, and distortions of load carrying path in optimized designs are illustrated. With several numerical results, the proposed integrated optimization method is proved to be an efficient way to decrease the error between computed and desired surface and achieve the accurate shape control of piezoelectric smart structures.
-
表 1 两种形状误差函数的对比
Table 1. Comparison of two shape error functions
表 2 测量点位移
Table 2. Deflections of each observation point in bending deformation
表 3 不同初始布局下的优化构型
Table 3. Different optimized design due to different original layouts
-
[1] Andoh F, Washington G, Yoon H, et al. Efficient shape control of distributed reflectors with discrete piezoelectric actuators. Journal of Intelligent Materials Systems and Structures, 2004, 15(1):3-15 doi: 10.1177/1045389X04039262 [2] Barrett R. Active plate and wing research using EDAP elements. Smart Materials and Structures, 1992, 1(3):214 doi: 10.1088/0964-1726/1/3/005 [3] Milojevié AP, Pavlovié ND. Development of a new adaptive shape morphing compliant structure with embedded actuators. Journal of Intelligent Material Systems and Structures, 2016, 21(10):1306-1328 https://www.researchgate.net/publication/281431710_Development_of_a_new_adaptive_shape_morphing_compliant_structure_with_embedded_actuators [4] Saggere L, Kota S. Static shape control of smart structures using compliant mechanisms. AIAA Journal, 1999, 37(5):572-578 doi: 10.2514/2.775 [5] Sofla AYN, Meguid SA, Tan KT, et al. Shape morphing of aircraft wing:Status and challenges. Materials and Design, 2010, 31(3): 1284-1292 doi: 10.1016/j.matdes.2009.09.011 [6] Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Materials and Design. 2014, 56(56):1078-1113 http://www.sciencedirect.com/science/article/pii/S0261306913011345 [7] Achuthan A, Keng AK, Ming WC. Shape control of coupled nonlinear piezoelectric beams. Smart materials and structures, 2001, 10(5):914 doi: 10.1088/0964-1726/10/5/308 [8] Chandrashekhara K, Varadarajan S. Adaptive shape control of composite beams with piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 1997, 8(2):112-124 doi: 10.1177/1045389X9700800202 [9] Chee C, Tong LY, Steven G. A buildup voltage distribution (BVD) algorithm for shape control of smart plate structures. Computational Mechanics, 2000, 26(2):115-128 doi: 10.1007/s004660000159 [10] Koconis DB, Kollar LP, Springer GS. Shape control of composite plates and shells with embedded actuators. Ⅱ. Desired shape specified. Journal of Composite Materials, 1994, 28(3):262-285 doi: 10.1177/002199839402800305 [11] Sun DC, Tong LY. Static shape control of structures using nonlinear piezoelectric actuators with energy constraints. Smart Materials and Structures, 2004, 13(5):1059 doi: 10.1088/0964-1726/13/5/012 [12] Chee C, Tong LY, Steven GP. Piezoelectric actuator orientation optimization for static shape control of composite plates. Composite Structures, 2002, 55(2):169-184 doi: 10.1016/S0263-8223(01)00144-1 [13] Nguyen Q, Tong L. Shape control of smart composite plate with non-rectangular piezoelectric actuators. Composite Structures, 2004, 66(1-4):207-214 doi: 10.1016/j.compstruct.2004.04.039 [14] Agrawal BN, Treanor KE. Shape control of a beam using piezoelectric actuators. Smart Materials and Structures, 1999, 8(6):729 doi: 10.1088/0964-1726/8/6/303 [15] Bruch Jr JC, Sloss JM, Adali S, et al. Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams. Smart Materials and Structures, 2000, 9(2):205 doi: 10.1088/0964-1726/9/2/311 [16] Sun DC, Tong LY. Design optimization of piezoelectric actuator patterns for static shape control of smart plates. Smart Materials and Structures, 2005, 14(6):1353 doi: 10.1088/0964-1726/14/6/027 [17] Sigmund O, Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization, 2013, 48(6):1031-1055 doi: 10.1007/s00158-013-0978-6 [18] Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization:post 2000. Structural and Multidisciplinary Optimization, 2014, 49(1):1-38 doi: 10.1007/s00158-013-0956-z [19] Zhu JH, Zhang WH, Xia L. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2015 [20] Kögl M, Silva EILC. Topology optimization of smart structures:design of piezoelectric plate and shell actuators. Smart Materials and Structures, 2005, 14(2):387 doi: 10.1088/0964-1726/14/2/013 [21] Kang Z, Tong LY. Topology optimization-based distribution design of actuation voltage in static shape control of plates. Computers and Structures, 2008, 86(19-20):1885-1893 doi: 10.1016/j.compstruc.2008.03.002 [22] Luo QT, Tong LY. Design and testing for shape control of piezoelectric structures using topology optimization. Engineering Structures, 2015, 97:90-104 doi: 10.1016/j.engstruct.2015.04.006 [23] Agrawal SK, Tong D, Nagaraja K. Modeling and shape control of piezoelectric actuator embedded elastic plates. Journal of Intelligent Material Systems and Structures, 1994, 5(4):514-521 doi: 10.1177/1045389X9400500407 [24] Kang Z, Wang R, Tong LY. Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16):1467-1478 doi: 10.1016/j.cma.2011.01.005 [25] Luo Z, Luo QT, Tong LY, et al. Shape morphing of laminated composite structures with photostrictive actuators via topology optimization. Composite Structures, 2011, 93(2):406-418 doi: 10.1016/j.compstruct.2010.09.001 [26] Carbonari RC, Silva ECN, Nishiwaki S. Optimum placement of piezoelectric material in piezoactuator design. Smart Materials and Structures, 2007, 16(1):207 doi: 10.1088/0964-1726/16/1/025 [27] Mukherjee A, Joshi S. Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates. AIAA Journal, 2002, 40(6):1204-1210 doi: 10.2514/2.1772 [28] Wang YQ, Luo Z, Zhang XP, et al. Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures, 2014, 23(4) 045024 doi: 10.1088/0964-1726/23/4/045024 [29] Gao HH, Zhu JH, Zhang WH, et al. An improved adaptive constraint aggregation for integrated layout and topology optimization. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 387-408 doi: 10.1016/j.cma.2015.02.022 [30] Zhu JH, Zhang WH, Beckers P. Integrated layout design of multicomponent system. International Journal for Numerical Methods in Engineering, 2009, 78(6):631-651 doi: 10.1002/nme.v78:6 [31] Zhu JH, Zhang WH, Beckers P, et al. Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Structural and Multidisciplinary Optimization, 2008, 36(1):29-41 doi: 10.1007/s00158-007-0155-x [32] Luo Z, Tong LY, Luo JZ, et al. Design of piezoelectric actuators using a multiphase level set method of piecewise constants. Journal of Computational Physics, 2009, 228(7):2643-2659 doi: 10.1016/j.jcp.2008.12.019 [33] Zillober C. A globally convergent version of the method of moving asymptotes. Structural Optimization, 1993 [34] Sigmund O, Petersson J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and locak minima. Structural Optimization, 1998, 16(1):68-75 doi: 10.1007/BF01214002 [35] Zhu JH, Gao HH, Zhang WH, et al. A multi-point constraints based integrated layout and topology optimization design of multicomponent systems. Structural and Multidisciplinary Optimization, 2015, 51(2):397-407 doi: 10.1007/s00158-014-1134-7 -