EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向压电智能结构精确变形的协同优化设计方法

吴曼乔 朱继宏 杨开科 张卫红

吴曼乔, 朱继宏, 杨开科, 张卫红. 面向压电智能结构精确变形的协同优化设计方法[J]. 力学学报, 2017, 49(2): 380-389. doi: 10.6052/0459-1879-16-273
引用本文: 吴曼乔, 朱继宏, 杨开科, 张卫红. 面向压电智能结构精确变形的协同优化设计方法[J]. 力学学报, 2017, 49(2): 380-389. doi: 10.6052/0459-1879-16-273
Wu Manqiao, Zhu Jihong, Yang Kaike, Zhang Weihong. INTEGRATED LAYOUT AND TOPOLOGY OPTIMIZATION DESIGN OF PIEZOELECTRIC SMART STRUCTURE IN ACCURATE SHAPE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 380-389. doi: 10.6052/0459-1879-16-273
Citation: Wu Manqiao, Zhu Jihong, Yang Kaike, Zhang Weihong. INTEGRATED LAYOUT AND TOPOLOGY OPTIMIZATION DESIGN OF PIEZOELECTRIC SMART STRUCTURE IN ACCURATE SHAPE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 380-389. doi: 10.6052/0459-1879-16-273

面向压电智能结构精确变形的协同优化设计方法

doi: 10.6052/0459-1879-16-273
基金项目: 

国家自然科学基金 11432011

国家自然科学基金 11620101002

高等学校创新引智计划 B07050

详细信息
    通讯作者:

    2) 朱继宏, 教授, 主要研究方向:飞行器轻质结构性能优化设计、航天器结构系统整体优化设计、热-机械耦合系统结构优化设计、面向增材制造的结构优化设计.E-mail:JH.Zhu@nwpu.edu.cn

  • 中图分类号: V214.19

INTEGRATED LAYOUT AND TOPOLOGY OPTIMIZATION DESIGN OF PIEZOELECTRIC SMART STRUCTURE IN ACCURATE SHAPE CONTROL

  • 摘要: 智能结构集智能材料与传统材料于一体,能够实现结构的主动控制,在航空航天等领域具有巨大的应用潜力.由于其系统复杂且具有多场耦合效应,智能结构的整体式优化设计方法成为结构控制技术研究的关键之一.为了提高压电智能结构的整体性能和变形精度,提出了同时考虑压电驱动器布局(分布位置及角度)和基体结构拓扑构型的协同优化设计新方法.采用多点约束方法(multi-point constraints,MPC)建立压电驱动器和基体结构的连接,定义一种与测量点目标位移相关的权重函数,以实现结构的精确变形控制.通过协同优化设计,压电驱动器可以获得最优的分布位置及角度,同时基体结构获得最优的拓扑构型,从而提升了压电智能结构系统的整体驱动性能和变形精度.通过进一步分析,研究了精确变形、体分比约束与结构优化构型和整体刚度的关系,以及优化结果中可能存在的传力路径畸变现象.数值算例的设计结果表明,采用协同优化设计方法,能够扩大结构的寻优空间,有效减小变形误差,实现压电智能结构的精确变形控制.

     

  • 图  1  压电智能结构协同优化示意图

    Figure  1.  Illustration of integrated layout and topology optimization design of piezoelectric smart structure

    图  2  压电智能结构模型示意图

    Figure  2.  Schematic of piezoelectric smart structure

    图  3  MPC模拟压电片与基体结构连接示意图

    Figure  3.  MPC connections to simulate bonding between piezoelectric actuators and host structure

    图  4  面内虚拟力示意图

    Figure  4.  Illustration of virtual in-plane force

    图  5  压电智能悬臂板结构示意图 ( $\bigcirc $ :测量点)

    Figure  5.  Schematic of a piezoelectric integrated cantilever plate ( $\bigcirc $ :observation points)

    图  6  弯曲变形结构构型优化历史

    Figure  6.  Iterative history of optimization design of structure configuration in bending deformation

    图  7  实际变形与目标变形曲面误差绝对值分布优化历史

    Figure  7.  Iterative history of absolute value of error distribution between computed shape and desired shape

    图  8  优化构型变形对比

    Figure  8.  Comparison of computed shape and desired shape

    图  9  协同优化收敛曲线

    Figure  9.  Convergence history of objective function and $E_{\rm r}$ constraint of iterative optimization design

    图  10  形状误差约束上限对结构应变能和结构构型的影响

    Figure  10.  Compliance energy and structure optimized design under different $E_{\rm r}$ constraint upper bounds

    图  11  体分比对结构应变能和结构构型的影响

    Figure  11.  Compliance energy and structure optimized design under different volume fractions

    表  1  两种形状误差函数的对比

    Table  1.   Comparison of two shape error functions

    表  2  测量点位移

    Table  2.   Deflections of each observation point in bending deformation

    表  3  不同初始布局下的优化构型

    Table  3.   Different optimized design due to different original layouts

  • [1] Andoh F, Washington G, Yoon H, et al. Efficient shape control of distributed reflectors with discrete piezoelectric actuators. Journal of Intelligent Materials Systems and Structures, 2004, 15(1):3-15 doi: 10.1177/1045389X04039262
    [2] Barrett R. Active plate and wing research using EDAP elements. Smart Materials and Structures, 1992, 1(3):214 doi: 10.1088/0964-1726/1/3/005
    [3] Milojevié AP, Pavlovié ND. Development of a new adaptive shape morphing compliant structure with embedded actuators. Journal of Intelligent Material Systems and Structures, 2016, 21(10):1306-1328 https://www.researchgate.net/publication/281431710_Development_of_a_new_adaptive_shape_morphing_compliant_structure_with_embedded_actuators
    [4] Saggere L, Kota S. Static shape control of smart structures using compliant mechanisms. AIAA Journal, 1999, 37(5):572-578 doi: 10.2514/2.775
    [5] Sofla AYN, Meguid SA, Tan KT, et al. Shape morphing of aircraft wing:Status and challenges. Materials and Design, 2010, 31(3): 1284-1292 doi: 10.1016/j.matdes.2009.09.011
    [6] Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Materials and Design. 2014, 56(56):1078-1113 http://www.sciencedirect.com/science/article/pii/S0261306913011345
    [7] Achuthan A, Keng AK, Ming WC. Shape control of coupled nonlinear piezoelectric beams. Smart materials and structures, 2001, 10(5):914 doi: 10.1088/0964-1726/10/5/308
    [8] Chandrashekhara K, Varadarajan S. Adaptive shape control of composite beams with piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 1997, 8(2):112-124 doi: 10.1177/1045389X9700800202
    [9] Chee C, Tong LY, Steven G. A buildup voltage distribution (BVD) algorithm for shape control of smart plate structures. Computational Mechanics, 2000, 26(2):115-128 doi: 10.1007/s004660000159
    [10] Koconis DB, Kollar LP, Springer GS. Shape control of composite plates and shells with embedded actuators. Ⅱ. Desired shape specified. Journal of Composite Materials, 1994, 28(3):262-285 doi: 10.1177/002199839402800305
    [11] Sun DC, Tong LY. Static shape control of structures using nonlinear piezoelectric actuators with energy constraints. Smart Materials and Structures, 2004, 13(5):1059 doi: 10.1088/0964-1726/13/5/012
    [12] Chee C, Tong LY, Steven GP. Piezoelectric actuator orientation optimization for static shape control of composite plates. Composite Structures, 2002, 55(2):169-184 doi: 10.1016/S0263-8223(01)00144-1
    [13] Nguyen Q, Tong L. Shape control of smart composite plate with non-rectangular piezoelectric actuators. Composite Structures, 2004, 66(1-4):207-214 doi: 10.1016/j.compstruct.2004.04.039
    [14] Agrawal BN, Treanor KE. Shape control of a beam using piezoelectric actuators. Smart Materials and Structures, 1999, 8(6):729 doi: 10.1088/0964-1726/8/6/303
    [15] Bruch Jr JC, Sloss JM, Adali S, et al. Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams. Smart Materials and Structures, 2000, 9(2):205 doi: 10.1088/0964-1726/9/2/311
    [16] Sun DC, Tong LY. Design optimization of piezoelectric actuator patterns for static shape control of smart plates. Smart Materials and Structures, 2005, 14(6):1353 doi: 10.1088/0964-1726/14/6/027
    [17] Sigmund O, Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization, 2013, 48(6):1031-1055 doi: 10.1007/s00158-013-0978-6
    [18] Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization:post 2000. Structural and Multidisciplinary Optimization, 2014, 49(1):1-38 doi: 10.1007/s00158-013-0956-z
    [19] Zhu JH, Zhang WH, Xia L. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2015
    [20] Kögl M, Silva EILC. Topology optimization of smart structures:design of piezoelectric plate and shell actuators. Smart Materials and Structures, 2005, 14(2):387 doi: 10.1088/0964-1726/14/2/013
    [21] Kang Z, Tong LY. Topology optimization-based distribution design of actuation voltage in static shape control of plates. Computers and Structures, 2008, 86(19-20):1885-1893 doi: 10.1016/j.compstruc.2008.03.002
    [22] Luo QT, Tong LY. Design and testing for shape control of piezoelectric structures using topology optimization. Engineering Structures, 2015, 97:90-104 doi: 10.1016/j.engstruct.2015.04.006
    [23] Agrawal SK, Tong D, Nagaraja K. Modeling and shape control of piezoelectric actuator embedded elastic plates. Journal of Intelligent Material Systems and Structures, 1994, 5(4):514-521 doi: 10.1177/1045389X9400500407
    [24] Kang Z, Wang R, Tong LY. Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16):1467-1478 doi: 10.1016/j.cma.2011.01.005
    [25] Luo Z, Luo QT, Tong LY, et al. Shape morphing of laminated composite structures with photostrictive actuators via topology optimization. Composite Structures, 2011, 93(2):406-418 doi: 10.1016/j.compstruct.2010.09.001
    [26] Carbonari RC, Silva ECN, Nishiwaki S. Optimum placement of piezoelectric material in piezoactuator design. Smart Materials and Structures, 2007, 16(1):207 doi: 10.1088/0964-1726/16/1/025
    [27] Mukherjee A, Joshi S. Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates. AIAA Journal, 2002, 40(6):1204-1210 doi: 10.2514/2.1772
    [28] Wang YQ, Luo Z, Zhang XP, et al. Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures, 2014, 23(4) 045024 doi: 10.1088/0964-1726/23/4/045024
    [29] Gao HH, Zhu JH, Zhang WH, et al. An improved adaptive constraint aggregation for integrated layout and topology optimization. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 387-408 doi: 10.1016/j.cma.2015.02.022
    [30] Zhu JH, Zhang WH, Beckers P. Integrated layout design of multicomponent system. International Journal for Numerical Methods in Engineering, 2009, 78(6):631-651 doi: 10.1002/nme.v78:6
    [31] Zhu JH, Zhang WH, Beckers P, et al. Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Structural and Multidisciplinary Optimization, 2008, 36(1):29-41 doi: 10.1007/s00158-007-0155-x
    [32] Luo Z, Tong LY, Luo JZ, et al. Design of piezoelectric actuators using a multiphase level set method of piecewise constants. Journal of Computational Physics, 2009, 228(7):2643-2659 doi: 10.1016/j.jcp.2008.12.019
    [33] Zillober C. A globally convergent version of the method of moving asymptotes. Structural Optimization, 1993
    [34] Sigmund O, Petersson J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and locak minima. Structural Optimization, 1998, 16(1):68-75 doi: 10.1007/BF01214002
    [35] Zhu JH, Gao HH, Zhang WH, et al. A multi-point constraints based integrated layout and topology optimization design of multicomponent systems. Structural and Multidisciplinary Optimization, 2015, 51(2):397-407 doi: 10.1007/s00158-014-1134-7
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  157
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-27
  • 网络出版日期:  2016-12-27
  • 刊出日期:  2017-03-18

目录

    /

    返回文章
    返回