EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类二维非自治离散系统中的复杂簇发振荡结构

陈振阳 韩修静 毕勤胜

陈振阳, 韩修静, 毕勤胜. 一类二维非自治离散系统中的复杂簇发振荡结构[J]. 力学学报, 2017, 49(1): 165-174. doi: 10.6052/0459-1879-16-267
引用本文: 陈振阳, 韩修静, 毕勤胜. 一类二维非自治离散系统中的复杂簇发振荡结构[J]. 力学学报, 2017, 49(1): 165-174. doi: 10.6052/0459-1879-16-267
Chen Zhenyang, Han Xiujing, Bi Qinsheng. COMPLEX BURSTING OSCILLATION STRUCTURES IN A TWO-DIMENSIONAL NON-AUTONOMOUS DISCRETE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 165-174. doi: 10.6052/0459-1879-16-267
Citation: Chen Zhenyang, Han Xiujing, Bi Qinsheng. COMPLEX BURSTING OSCILLATION STRUCTURES IN A TWO-DIMENSIONAL NON-AUTONOMOUS DISCRETE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 165-174. doi: 10.6052/0459-1879-16-267

一类二维非自治离散系统中的复杂簇发振荡结构

doi: 10.6052/0459-1879-16-267
基金项目: 

国家自然科学基金 11572141,11632008,11502091,11472115,11402226

详细信息
    通讯作者:

    韩修静,E-mail:xjhan@mail.ujs.edu.cn

  • 中图分类号: O322

COMPLEX BURSTING OSCILLATION STRUCTURES IN A TWO-DIMENSIONAL NON-AUTONOMOUS DISCRETE SYSTEM

  • 摘要: 簇发振荡是多时间尺度系统复杂动力学行为的典型代表,簇发振荡的动力学机制与分类问题是簇发研究的重要问题之一,但当前学者们所揭示的簇发振荡的结构大多较为简单.研究以非自治离散Duffing系统为例,探讨具有复杂分岔结构的新型簇发振荡模式,并将其分为两大类,一类经由Fold分岔所诱发的对称式簇发,另一类经由延迟倍周期分岔所诱发的非对称式簇发.快子系统的分岔表现为典型的含有两个Fold分岔点的S形不动点曲线,其上、下稳定支可经由倍周期(即Flip)分岔通向混沌.当非自治项(即慢变量)穿越Fold分岔点时,系统的轨线可以向上、下稳定支的各种吸引子(例如,周期轨道和混沌)进行转迁,因此得到了经由Fold分岔所诱发的各种对称式簇发;而当非自治项无法穿越Fold分岔点,但可以穿越Flip分岔点时,系统产生了延迟Flip分岔现象.基于此,得到了经由延迟Flip分岔所诱发的各种非对称簇发.特别地,文中所报道的簇发振荡模式展现出复杂的反向Flip分岔结构.研究结果表明,这与非自治项缓慢地反向穿越快子系统的Flip分岔点有关.研究结果丰富了离散系统簇发的动力学机理和分类.

     

  • 图  1  快子系统关于单参数$\beta $的分岔图

    Figure  1.  One parameter bifurcation diagram of the fast sub-system with respect to $\beta $

    图  2  快子系统在($\beta,b$)平面上的分岔集

    Figure  2.  Bifurcation set of the fast system on the plane ($\beta ,b$)

    图  3  映射(2)关于参数 $\beta $ 的典型单参数分岔图

    Figure  3.  Typical one parameter bifurcation diagrams of the map (2) with respect to $\beta $

    图  4  不同的对称簇发

    Figure  4.  Different symmetric bursting

    图  5  对称式"Fold/级联反向 Flip"簇发,$b =0.215$,$Z_n =0.4\cos(0.001 n)$

    Figure  5.  Symmetric "Fold/a cascade of inverse Flip" bursting,$b =0.215$,$Z_n =0.4\cos(0.001 n)$

    图  6  另一种混沌簇发,$a =1.975$,$b =0$,$Z_n = 0.38 \cos(0.001 n) $

    Figure  6.  Another chaotic bursting,where $a =1.975$,$b =0$,$Z_n = 0.38\cos(0.001 n ) $

    图  7  $ b =0.2$时快子系统关于 $\beta $ 的分岔图

    Figure  7.  Bifurcation diagram of fast subsystem with $\beta $ for $b =0.2$

    图  8  "延迟Flip/反向Flip"簇发,$b =0.2$,$Z_n =0.27\cos(0.001 n)$

    Figure  8.  "Delayed F lip/inverse Flip" bursting,$b =0.2$,$Z_n =0.27\cos(0.001n)$

    图  9  "双重延迟 Flip/双重反向 Flip"簇发,$ b =0.2$,$Z_n =0.34\cos(0.001 n)$

    Figure  9.  "Delayed double Flip/double inverse Flip" bursting,$b =0.2$,$Z_n =0.34\cos(0.001 n)$

    图  10  "多重延迟 Flip/多重反向Flip"簇发,$ b =0.2$,$Z_n =0.35\cos(0.001 n)$

    Figure  10.  "Delayed multiple Flip/inverse multiple Flip" bursting,$b =0.2$,$Z_n =0.35\cos(0.001 n)$

    图  11  "级联延迟Flip /级联反向 Flip"簇发,$ b =0.2$,$Z_n =0.38\cos(0.001 n)$

    Figure  11.  "A cascade of delayed Flip /a cascade of inverse Flip" bursting, $b =0.2$,$Z_n =0.38\cos(0.001 n)$

  • [1] Izhikevich EM. Neural excitability, spiking and bursting. Int J Bifurcat Chaos, 2000, 10(6):1171-1266 doi: 10.1142/S0218127400000840
    [2] Izhikevich EM. Resonance and selective communication via bursts in neurons having subthreshold oscillations. Bio Systems, 2002, 67(1-3):95-102 doi: 10.1016/S0303-2647(02)00067-9
    [3] 古华光,朱洲,贾冰. 一类新的混沌神经放电的动力学特征的实验和数学模型研究. 物理学报, 2011, 60(10):1005051-10050512 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201110013.htm

    Gu Huaguang, Zhu Zhou, Jia Bing. Dynamics of a novel chaotic neural firing pattern discovered in experiment and simulated in mathematical model. Acta Phys Sin, 2011, 60(10):1005051-10050512(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201110013.htm
    [4] 王帅, 于文浩, 陈巨辉等. 鼓泡流化床中流动特性的多尺度数值模拟. 力学学报,2016, 48(3):585-592 http://lxxb.cstam.org.cn/CN/abstract/abstract145781.shtml

    Wang Shuai, Yu Wenhao, Chen Juhui, et al. Multi-scale simulation on hydrodynamic characteristics in bubbling fluidized bed. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):585-592(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145781.shtml
    [5] Li XH, Bi QS. Single-Hopf Bursting in periodic perturbed Belousov——Zhabotinsky reaction with two time scales. Chinese Phys Lett, 2013, 30(1):10503-10506 doi: 10.1088/0256-307X/30/1/010503
    [6] Li XH, Zhang C, Yu Y, et al. Periodic switching oscillation and mechanism in a periodically switched BZ reaction. Sci China E, 2012, 55(10):2820-2828 doi: 10.1007/s11431-012-4988-1
    [7] Lashina EA, Chumakova NA, Chumakov GA, et al. Chaotic dynamics in the three-variable kinetic model of CO oxidation on platinum group metals. Chem Eng J, 2009, 154(1-3):82-87 doi: 10.1016/j.cej.2009.02.017
    [8] 贾宏涛, 许春晓, 崔桂香. 槽道湍流近壁区多尺度输运特性研究. 力学学报, 2007, 39(2):181-187 http://lxxb.cstam.org.cn/CN/abstract/abstract141540.shtml

    Jia Hongtao, Xu Chunxiao, Cui Guixiang. Multi-scale energy transfer in near-wall region of turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2):181-187(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract141540.shtml
    [9] Clarke RJ, Apell HJ, Kong BY. Allosteric effect of ATP on, Na+, K+- ATPase conformational kinetics. Biochemistry, 2007, 46(23):7034-7044 doi: 10.1021/bi700619s
    [10] 郭建侠, 卞林根, 戴永久. 玉米生育期地表能量平衡的多时间尺度特征分析及不平衡原因的探索. 中国科学D, 2008, 38(9):1103-1111 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200809006.htm

    Guo Jianxia, Bian Lingen, Dai Yongjiu. Analysis of characteristics of multiple time scale in surface energy balance of corn in growth period, and exploration of the reasons for unbalance. Sci China D, 2008, 38(9):1103-1111(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200809006.htm
    [11] Courbage M, Nekorkin VI, Vdovin LV. Chaotic oscillations in a map-based model of neural activity. Chaos, 2007, 17(4):155-160 http://cn.bing.com/academic/profile?id=16c39feaee8d1ce7e25b7e1366fd9c88&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Butera Jr RJ, Rinzel J, Smith JC. Models of respiratory rhythm generation in the pre-Bötzinger complex. Ⅱ. populations of coupled pacemaker neurons. J Neurophysiol, 1999, 82(1):398-415 http://d.scholar.cnki.net/detail/SJPD2059_U/SJPD12102800176896
    [13] Rinzel J. Bursting oscillation in an excitable membrane model//Everitt WN, Sleeman BD. Lecture Note In Mathematics. Vol. 1151. New York:Springer, 1985:304-316
    [14] 杨卓琴,陆启韶. 神经元Chay模型中不同类型的簇放电模式. 中国科学G, 2007, 37(4):440-450 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200704004.htm

    Yang Zhuoqin Lu Qishao. Different types of bursting spiking mode in Chay model of neurons. Sci China G, 2007, 37(4):440-450(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200704004.htm
    [15] Rulkov NF. Regularization of synchronized chaotic bursts. Phys Rev Lett, 2001,86(1):183-186 doi: 10.1103/PhysRevLett.86.183
    [16] Wagenaar DA, Pine J, Potter SM. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci, 2006, 7(1):1-18 doi: 10.1186/1471-2202-7-1
    [17] 古华光,惠磊,贾冰. 一类位于加周期分岔中的貌似混沌的随机神经放电规律的识别. 物理学报, 2012, 61(8):0805041-08050410 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201208012.htm

    Gu Huaguang, Hui Lei, Jia Bing. Identification of a stochastic neural firing rhythm lying in period-adding bifurcation and resembling chaos. Acta Phys Sin, 2012, 61(8):0805041-08050410(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201208012.htm
    [18] Channell P, Cymbalynk G, Shilnikov A. Applications of the Poincaré mapping technique to analysis of neuronal dynamics. Neurocomputing, 2007, 70(10-12):2107-2111 doi: 10.1016/j.neucom.2006.10.091
    [19] Izhikevich EM, Hoppensteadt F. Classfication of bursting mapping. Int J Bifurcat Chaos, 2004, 14(11):3847-3854 doi: 10.1142/S0218127404011739
    [20] Courbage M, Maslennikov OV, Nekorkin VI. Synchronization in time-discrete model of two electrically coupled spike-bursting neurons. Chaos Soliton Fract, 2012, 45(5):645-659 doi: 10.1016/j.chaos.2011.12.018
    [21] Maslennikov OV, Nekorkin VI. Discrete model of the olivo-cerebellar system:structure and dynamics. Radiophys Quant El, 2012, 55(55):198-214 http://cn.bing.com/academic/profile?id=df75f9d09592b4449f3380115ad985cd&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Nekorkin VI, Maslennikov OV. Spike-burst synchronization in an ensemble of electrically coupled discrete model neurons. Radiophys Quant El, 2011, 54(1):56-73 doi: 10.1007/s11141-011-9271-y
    [23] Stoyanov B, Kordov K. Novel image encryption scheme based on Chebyshev polynomial and Duffing map. Scientific World J, 2014, 2014:283639-283639 http://cn.bing.com/academic/profile?id=a4a7b5f68efd50e48dc56d98a544b204&encoded=0&v=paper_preview&mkt=zh-cn
    [24] Kuehn C. Multiple Time Scale Dynamics. New York:Springer, 2015:8-14
    [25] Han XJ, Bi QS. Bursting oscillations in Duffing's equation with slowly changing external forcing. Commun Nonlinear Sci Numer Simul, 2011, 16(10):4146-4152 doi: 10.1016/j.cnsns.2011.02.021
    [26] 张晓芳,陈小可,毕勤胜. 快慢耦合振子的张驰簇发及其非光滑分岔机制. 力学学报,2012,44(3):576-583 http://lxxb.cstam.org.cn/CN/abstract/abstract143327.shtml

    Zhang Xiaofang, Chen Xiaoke, Bi Qinsheng. Relaxation bursting of a fast-slow coupled oscillation as well as the mechanism of non-smooth bifurcation. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(3):576-583(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract143327.shtml
    [27] Han XJ, Bi QS. Slow passage through canard explosion and mixed mode oscillations in the forced Van der Pol's equation. Nonlinear Dyn, 2012, 68(1-2):275-283 doi: 10.1007/s11071-011-0226-9
    [28] Bear SM, Erneux T, Rinzel J. The slow passage through a Hopf bifurcation:delay, memory effects, and resonance. SIAM J Appl Math, 1989, 49(1):55-71 doi: 10.1137/0149003
    [29] Baesens C. Slow sweep through a period-doubling cascade:Delayed bifurcations and renormalisation. Physica D, 1991, 53(2-4):319-375 doi: 10.1016/0167-2789(91)90068-K
    [30] Han XJ, Bi QS, Zhang C, et al. Study of mixed-mode oscillations in a parametrically excited van der Pol system. Nonlinear Dyn, 2014, 77(4):1285-1296 doi: 10.1007/s11071-014-1377-2
    [31] Tzou JC, Ward MJ, Kolokolnikov T. Slowly varying control parameters, delayed bifurcations, and the stability of spikes in reaction——diffusion systems. Physica D, 2015, 290:24-43 doi: 10.1016/j.physd.2014.09.008
  • 加载中
图(11)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  72
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-22
  • 修回日期:  2016-11-06
  • 网络出版日期:  2016-11-11
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回