EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于SHTB的II型动态断裂实验技术

邹广平 谌赫 唱忠良

邹广平, 谌赫, 唱忠良. 一种基于SHTB的II型动态断裂实验技术[J]. 力学学报, 2017, 49(1): 117-125. doi: 10.6052/0459-1879-16-239
引用本文: 邹广平, 谌赫, 唱忠良. 一种基于SHTB的II型动态断裂实验技术[J]. 力学学报, 2017, 49(1): 117-125. doi: 10.6052/0459-1879-16-239
Zou Guangping, Chen He, Chang Zhongliang. A MODIFIED MODE II DYNAMIC FRACTURE TEST TECHNIQUE BASED ON SHTB[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 117-125. doi: 10.6052/0459-1879-16-239
Citation: Zou Guangping, Chen He, Chang Zhongliang. A MODIFIED MODE II DYNAMIC FRACTURE TEST TECHNIQUE BASED ON SHTB[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 117-125. doi: 10.6052/0459-1879-16-239

一种基于SHTB的II型动态断裂实验技术

doi: 10.6052/0459-1879-16-239
基金项目: 

国家自然科学基金资助项目 11372081

详细信息
    通讯作者:

    邹广平,教授,主要研究方向:动态断裂力学.E-mail:gpzou@hotmail.com

    3)唱忠良,E-mail:czl19820228@163.com

  • 中图分类号: O347.4

A MODIFIED MODE II DYNAMIC FRACTURE TEST TECHNIQUE BASED ON SHTB

  • 摘要: 冲击剪切载荷作用下动态断裂韧性的测定是材料力学性能和断裂行为研究中重要组成部分.为了测定材料的II型动态断裂韧性,许多学者采用不同的试样与实验方法进行了实验,但限于实验条件,裂纹断裂模式往往是I+II复合型,而不是纯II型,因而不能准确测得材料的II型动态断裂韧性.鉴于此,本文基于分离式霍普金森拉杆(split Hopkinson tension bar,SHTB)实验技术,提出一种改进的紧凑拉伸剪切(modified compact tensionshear,MCTS)试样,通过夹具对MCTS试样施加约束,从而保证试样按照纯II型模式断裂.采用实验——数值方法对MCTS试样动态加载过程进行分析,将实验测得的波形输入有限元软件ANSYS-LSDYNA,得到了裂纹尖端应力强度因子——时间曲线,并与紧凑拉伸剪切(compact tension shear,CTS)试样进行了对比.同时采用数字图像相关法进行了实验,验证了有限元分析结果.结果表明,MCTS试样在整个加载过程中KI$\ll $KII,裂纹没有张开;而CTS试样在同样的加载过程中KI>KII,出现裂纹张开现象.这说明MCTS试样能够准确地测定材料的II型动态断裂韧性,为材料动态力学测试提供了一种有效的实验技术.

     

  • 图  1  SHPB加载ENF试样示意图

    Figure  1.  SHPB apparatus and ENF specimen

    图  2  SEN试样与实验结果

    Figure  2.  SEN specimen and dynamic SIF

    图  3  双裂纹试样示意图

    Figure  3.  Schematic diagram of dual-crack specimen

    图  4  薄片状切口试样

    Figure  4.  Thin plane notched specimen

    图  5  CTS试样与夹具示意图

    Figure  5.  Schematic diagram of CTS specimen and clamp

    图  6  MCTS试样与夹具示意图

    Figure  6.  Schematic diagram of MCTS specimen and clamp

    图  7  裂尖坐标系统

    Figure  7.  Coordinate system of crack tip

    图  8  MCTS试样有限元模型

    Figure  8.  Finite element model of MCTS specimen

    图  9  实测入射波形

    Figure  9.  Detected incident pulse in test

    图  10  裂纹面节点

    Figure  10.  Nodes on crack surface

    图  11  裂纹面节点应力强度因子计算值

    Figure  11.  SIF of nodes on crack surface

    图  12  MCTS试样裂纹尖端应力强度因子

    Figure  12.  SIF of MCTS specimen at crack tip

    图  13  CTS试样有限元模型

    Figure  13.  Finite element model of CTS specimen

    图  14  CTS试样裂纹尖端应力强度因子

    Figure  14.  SIF of CTS specimen at crack tip

    图  15  MCTS试样约束装置

    Figure  15.  Constrain apparatus of MCTS specimen

    图  16  DIC实验装置

    Figure  16.  DIC apparatus

    图  17  喷涂散斑的MCTS试样

    Figure  17.  Speckled MCTS specimen

    图  18  SHTB实验装置示意图

    Figure  18.  Schematic diagram of SHTB apparatus

    图  19  MCTS试样$x$方向应变场

    Figure  19.  Strain field of MCTS specimen in $x$-direction

    图  20  MCTS试样$y$方向应变场

    Figure  20.  Strain field of MCTS specimen in $y$-direction

    图  21  MCTS试样裂纹尖端应力强度因子实验值

    Figure  21.  Detected SIF of MCTS specimen at crack tip

    表  1  有限元模型材料属性

    Table  1.   Material properties of finite element model

  • [1] Blackman B, Kinloch A, Wang Y, et al. The failure of fibre composites and adhersively bonded fibre composites under high rates of test. Journal of Material Science, 1996, 31(17):4451-4466 doi: 10.1007/BF00366341
    [2] Blackman B, Kinloch A, Ro driguez-Sanchez FS, et al. The fracture behavior of adhersively bonded composite joints:Effects of rate of test and mode of loading. International Journal of Solid and Structures, 2012, 49(13):1434-1452 doi: 10.1016/j.ijsolstr.2012.02.022
    [3] Todo M, Nakamura T, Takashi K. Mode II interlaminar fracture behavior of fiber reinforced polyamide composites under static and dynamic loading conditions. Journal of Reinforced Plastics and Composites, 1999, 18(15):1415-1427 http://cn.bing.com/academic/profile?id=d52c6f3c7c09fbeadba33a1939ccf220&encoded=0&v=paper_preview&mkt=zh-cn
    [4] Todo M, Nakamura T, Mada T, et al. Measurement of dynamic interlaminar fracture toughness of FRP laminates using dynamic displacement measuring apparatus. Advanced Composite Materials, 1998, 7(3):285-297 doi: 10.1163/156855198X00200
    [5] Iqbal MA, Senthil K, Sharma P, et al. An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. International Journal of Impact Engineering, 2016, 96:146-164 doi: 10.1016/j.ijimpeng.2016.05.017
    [6] 许泽建, 丁晓燕, 张炜琪等. 一种用于材料高应变率剪切性能测试的新型加载技术. 力学学报, 2016, 48(3):654-659 http://lxxb.cstam.org.cn/CN/abstract/abstract145837.shtml

    Xu Zejian, Ding Xiaoyan, Zhang Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):654-659(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145837.shtml
    [7] 于金程,刘正, 董阳等. 高应变速率下Mg-Gd-Y镁合金动态拉伸性能与失效行为. 沈阳工业大学学报, 2015, 37(6):650-655 http://www.cnki.com.cn/Article/CJFDTOTAL-SYGY201506010.htm

    Yu Jincheng, Liu Zheng, Dong Yang, et al. Dynamic tensile properties and failure behavior of Mg-Gd-Y alloy at high strain rates. Journal of Shenyang University of Technology, 2015, 37(6):650-655(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYGY201506010.htm
    [8] 邹广平,沈昕慧,赵伟玲等. SHTB加载紧凑拉伸试样断裂韧性测试仿真.哈尔滨工程大学学报, 2015, 36(7):917-921 http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201507009.htm

    Zou Guangping, Shen Xinhui, Zhao Weiling, et al. Numerical simulation of dynamic fracture toughness tests on the compact tension specimen loaded by SHTB. Journal of Harbin Engineering University, 2015, 36(7):917-921(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201507009.htm
    [9] Xia KW, Yao W. Dynamic rock tests using split Hopkinson (Kolsky) bar system——A review. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1):27-59 doi: 10.1016/j.jrmge.2014.07.008
    [10] 李玉龙,刘会芳. 加载速率对层间断裂韧性的影响. 航空学报, 2015, 36(8):2620-2650 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508014.htm

    Li Yulong, Liu Huifang. Loading rate effect on interlaminar fracture toughness. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2620-2650(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508014.htm
    [11] Kusaka T, Hojo M, Mai YW, et al. Rate dependence of mode I fracture behavior in carbon-fiber/epoxy composite laminates. Composite Science and Technology, 1998, 58(3-4):591-602 doi: 10.1016/S0266-3538(97)00176-0
    [12] Kusaka T, Kurokawa T, Hojo M, et al. Evaluation of mode II interlaminar fracture composite of laminates under impact loading. Key Engineering Materials, 1997, 141-143:477-500
    [13] Kusaka T, Yamaguchi Y, Kurokawa T. Effect of strain rates on mode II interlaminar fracture toughness in carbon-fiber/epoxy laminated composites. Journal of Physics IV France, 1994, 4(8):671-676
    [14] Jiang F, Vecchio KS. Hopkinson bar loaded fracture experimental technique:A critical review of dynamic fracture toughness tests. Applied Mechanics Reviews, 2009, 62(6):1-39 http://cn.bing.com/academic/profile?id=704c0cf947f5fa6b6ea741eafbc2fca3&encoded=0&v=paper_preview&mkt=zh-cn
    [15] Yokoyama T, Kishida K. A novel impact three-point bend test method for determining dynamic fracture initiation toughness. Experimental Mechanics, 1989, 29(2):188-194 doi: 10.1007/BF02321374
    [16] Rubio L, Fernandez-Saze J, Navarro C. Determination of dynamic fracture initiation toughness using three-point bending tests in a modified Hopkinson pressure bar. Experimental Mechanics, 2003, 43(2):379-386 http://cn.bing.com/academic/profile?id=8ad8d647d8ad8d4cb1f20656f3c9d286&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Lambros J, Rosakis AJ. Dynamic crack initiation and growth in thick unidirectional graphite/epoxy plates. Composite Science and Technology, 1997, 57(1):413-421 http://cn.bing.com/academic/profile?id=ae67b76228cd95fa23da24089bf161f1&encoded=0&v=paper_preview&mkt=zh-cn
    [18] Wu XF, Dzenis YA. Determination of dynamic delamination toughness of a graphite-fiber/epoxy composite using Hopkinson bar. Polymer Composites, 2005, 26(2):165-180 doi: 10.1002/(ISSN)1548-0569
    [19] Sohn MS, Hu XZ. Impact and high strain rate delamination characteristics of carbon fiber epoxy composites. Theoretical and Applied Fracture Mechanics, 1996, 25(1):17-29 doi: 10.1016/0167-8442(96)00003-1
    [20] Wen X, Lu F, Chen R, et al. Experimental studies on mixed-mode dynamic fracture behaviour of aluminium alloy plates with narrow U-notch. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39(11):1379-1390 doi: 10.1111/ffe.v39.11
    [21] 沈昕慧.应力波加载下材料动态断裂韧性相关实验技术研究.[博士论文]. 哈尔滨:哈尔滨工程大学,2016

    Shen Xinhui. Investigation on dynamic fracture toughness experimental technique under stress wave load.[PhD Thesis]. Harbin:Harbin Engineering University, 2016(in Chinese)
    [22] Richard HA. A new compact shear specimen. International Journal of Fracture, 1981, 17(5):105-107 http://cn.bing.com/academic/profile?id=4634e43681b681d92f0e2e16abf8ec02&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Anderson TL. Fracture Mechanics, Foundations and Applications. Boca Raton, CRC Press, 1991
    [24] 王自强,陈少华. 高等断裂力学. 北京:科学出版社, 2009:43-76

    Wang Ziqiang, Chen Shaohua. Advanced Fracture Mechanics. Beijing:Science Press, 2009:43-76(in Chinese)
    [25] Xu Z, Li Y. A novel method in determination of dynamic fracture toughness under mixed mode I/II impact loading. International Journal of Solids and Structures, 2012, 49:366-376 doi: 10.1016/j.ijsolstr.2011.10.011
    [26] 郦正能.应用断裂力学. 北京:北京航空航天大学出版社, 2012:64-72

    Li Zhengneng. Applied Fracture Mechanics. Beijing:Beihang University Press, 2012:64-72(in Chinese)
    [27] Peters WH, Ranson WH. Digital imaging technique in experimental mechanics. Opt Eng, 1982, 21(3):427-431
    [28] Yamaguchi I. Speckle displacement and deformation in the diffraction and image fields for small object deformation. Opt Acta, 1981, 28(10):1359-1376 doi: 10.1080/713820454
    [29] 周忠彬,陈鹏万,黄风雷. PBX材料宏细观断裂行为的数字散斑相关法实验研究.高压物理学报, 2011, 25(1):1-7 http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201101002.htm

    Zhou Zhongbin, Chen Pengwan, Huang Fenglei. An experimental study on the micro/macro fracture behavior of PBX using digital speckle correlation method. Chinese Journal of High Pressure Physics, 2011, 25(1):1-7(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201101002.htm
    [30] 邹广平,汪艳伟,唱忠良等. 基于数字散斑相关法的紧凑拉伸试样断裂韧性实验研究. 实验力学, 2015, 30(3):275-281 http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201503003.htm

    Zou Guangping, Wang Yanwei, Chang Zhongliang, et al. Experimental study of compact tension specimen fracture toughness based on digital speckle correlation method. Journal of Experimental Mechanics, 2015, 30(3):275-281(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201503003.htm
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  156
  • PDF下载量:  799
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-29
  • 修回日期:  2016-11-26
  • 网络出版日期:  2016-11-29
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回