EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细颗粒泥沙净冲刷和输移的大涡模拟研究

白静 方红卫 何国建 谢崇宝 高虹

白静, 方红卫, 何国建, 谢崇宝, 高虹. 细颗粒泥沙净冲刷和输移的大涡模拟研究[J]. 力学学报, 2017, 49(1): 65-74. doi: 10.6052/0459-1879-16-235
引用本文: 白静, 方红卫, 何国建, 谢崇宝, 高虹. 细颗粒泥沙净冲刷和输移的大涡模拟研究[J]. 力学学报, 2017, 49(1): 65-74. doi: 10.6052/0459-1879-16-235
Bai Jing, Fang Hongweiy, He Guojiany, Xie Chongbao, Gao Hong. NUMERICAL SIMULATION OF EROSION AND TRANSPORT OF FINE SEDIMENTS BY LARGE EDDY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 65-74. doi: 10.6052/0459-1879-16-235
Citation: Bai Jing, Fang Hongweiy, He Guojiany, Xie Chongbao, Gao Hong. NUMERICAL SIMULATION OF EROSION AND TRANSPORT OF FINE SEDIMENTS BY LARGE EDDY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 65-74. doi: 10.6052/0459-1879-16-235

细颗粒泥沙净冲刷和输移的大涡模拟研究

doi: 10.6052/0459-1879-16-235
详细信息
    通讯作者:

    方红卫,教授,主要研究方向:环境泥沙及河流动力学.E-mail:fanghw@mail.tsinghua.com

  • 中图分类号: TV142

NUMERICAL SIMULATION OF EROSION AND TRANSPORT OF FINE SEDIMENTS BY LARGE EDDY SIMULATION

  • 摘要: 在传统水沙输移数值模拟研究中一般采用雷诺时均模拟技术(Reynolds-averaged simulation,RANS).与RANS相比,大涡模拟技术(large eddy simulation,LES)能够更加精确反映细部流动结构,计算机的发展使得采用LES探讨水流和泥沙运动规律成为可能.本文尝试给出净冲刷条件下悬沙计算的边界条件,采用动态亚格子模式对循环槽道和长槽道中的水流运动和泥沙输移进行了三维大涡模拟研究.利用直接数值模拟(directnumerical simulation,DNS)结果对LES模型进行了率定,计算结果符合良好,在此基础上初步探讨了泥沙浓度、湍动强度和湍动通量等的分布特征.结果表明,净冲刷条件下输沙平衡时泥沙浓度符合Rouse公式分布,单向流动中泥沙浓度沿着流向逐渐增大.泥沙浓度湍动强度和湍动通量都在近底部达到最大值,沿着垂向迅速减小.湍动黏性系数和扩散系数基本上在水深中间处达到最大.湍动Schmidt数沿着水深方向不是常数,在近底部和自由水面附近较大,在水深中间处较小.

     

  • 图  1  计算网格示意图

    Figure  1.  The sketch map of the computational grids

    图  2  算例2计算区域平面示意图

    Figure  2.  The sketch map of the computational domain in case 2

    图  3  算例1中LES和DNS流向速度和湍动强度比较

    Figure  3.  Comparisons of the stream wise velocity and turbulence intensities between LES and DNS in case 1

    图  4  无量纲切应力计算结果对比图

    Figure  4.  The comparison of the dimensionless shear-stresses between LES and DNS

    图  5  算例2中不同位置上流向速度和湍动强度分布

    Figure  5.  The profiles of the stream-wise velocities and turbulence intensities at different locations in case 2

    图  6  算例2中无量纲切应力的分布

    Figure  6.  The profiles of the dimensionless shear stresses at different locations in case 2

    图  7  时均泥沙浓度分布

    Figure  7.  The profiles of time-averaged sediment concentration

    图  8  算例2中断面平均的泥沙浓度沿程分布

    Figure  8.  Distribution of the cross-section averaged sediment concentration in case 2

    图  9  算例1中泥沙浓度湍动强度和湍动通量的分布

    Figure  9.  The turbulence intensity of sediment concentration and vertical sediment turbulence flux in case 1

    图  10  湍动黏性系数和扩散系数分布图

    Figure  10.  The turbulence viscosity coefficient and the turbulence diffusion coefficient in two cases

    图  11  算例1中湍动Schmidt数分布图

    Figure  11.  The profile of the turbulence Schmidt number in case 1

  • [1] Walling DE, Owens PN, Carton J, et al. Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied Geochemistry, 2003, 18(1):195-220 http://cn.bing.com/academic/profile?id=445b0911b68f43f405934349072c41c0&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Collins AL, Walling DE, Leeks GJ. Storage of fine-grained sediment and associated contaminants within the channels of lowland permeable catchments in the UK//Sediment Budgets 1, Walling D E, Horowitz A J, eds. IAHS Publication No. 291, IAHS Press:Wallingford, UK, 2005:259-268
    [3] Fang HW, Zhao HM, Shang QQ, et al. Effect of biofilm on the rheological properties of cohesive sediment. Hydrobiologia, 2012, 694(1):171-181 doi: 10.1007/s10750-012-1140-y
    [4] Huang L, Fang H, Reible D. Mathematical model for interactions and transport of phosphorus and sediment in the Three Gorges Reservoir. Water Research, 2015, 85:393-403 doi: 10.1016/j.watres.2015.08.049
    [5] Fang HW, Huang L, Wang JY, et al. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China. Journal of Hazardous Materials, 2015, 302(17):3836-3849 http://cn.bing.com/academic/profile?id=b5cf88dcfec6b76a26ba9c67cdf101fb&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Marchioli C, Soldati A. Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 2002, 468:283-315 http://cn.bing.com/academic/profile?id=e25f56501537c04f56b824ca1ff87207&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Chang YS, Scotti A. Entrainment and suspension of sediments into a turbulent flow over ripples. Journal of turbulence, 2003, 4(19):1-22 http://cn.bing.com/academic/profile?id=7ffd7dc9a57c57483ef92cfc7055c548&encoded=0&v=paper_preview&mkt=zh-cn
    [8] van Rijn LC. 2007. Unified view of sediment transport by currents and waves Ⅱ:suspended transport. Journal of Hydraulic Engineering-ASCE, 2007,133(6):668-689 doi: 10.1061/(ASCE)0733-9429(2007)133:6(668)
    [9] Zeng J, Constantinescu G, Weber L. A 3D non-hydrostatic model to predict flow and sediment transport in loose-bed channel bends. Journal of Hydraulic Research, 2008:46(3):356-372 doi: 10.3826/jhr.2008.3328
    [10] Fang H, He G, Liu J, et al. 3D numerical investigation of distorted scale in hydraulic physical model experiments. Journal of Coastal Research, 2015, 10052(1):41-54 http://cn.bing.com/academic/profile?id=73c3d2cbe44fa44ae41c108ad3b9ffa6&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Keylock CJ, Hardy RJ, Parsons DR, et al. The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth-Science Reviews, 2005, 71(3-4):271-304 doi: 10.1016/j.earscirev.2005.03.001
    [12] Rodi W. Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71:55-75 doi: 10.1016/S0167-6105(97)00147-5
    [13] Zedler EA, Street RL. Large-eddy simulation of sediment transport:currents over ripples. Journal of Hydraulic Engineering-ASCE, 2001, 127(6):444-452 doi: 10.1061/(ASCE)0733-9429(2001)127:6(444)
    [14] Zedler EA, Street RL. Sediment transport over ripples in oscillatory flow. Journal of Hydraulic Engineering-ASCE, 2006, 132(2):180-193 doi: 10.1061/(ASCE)0733-9429(2006)132:2(180)
    [15] Chou YJ, Fringer OB. Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model. Physics of Fluids, 2008, 20(11):115103 doi: 10.1063/1.3005863
    [16] Widera P, Ghorbaniasl G, Lacor C. Study of the sediment transport over flat and wavy bottom using large-eddy simulation. Journal of Turbulence, 2009, 10(33):1-20 http://cn.bing.com/academic/profile?id=09628b21380b434ea12c4db8a6a7e3a5&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Widera P, Toorman E, Lacor C. Large eddy simulation of sediment transport in open-channel flow. Journal of Hydraulic Research, 2009, 47(3):291-298 doi: 10.1080/00221686.2009.9522000
    [18] Bai J, Fang HW, Stoesser T. Transport and deposition of fine sediment in open channels with different aspect ratios. Earth Surface Processes and Landforms, 2013, 38(6):591-600 doi: 10.1002/esp.v38.6
    [19] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 1991, 3(7):1760-1765 doi: 10.1063/1.857955
    [20] Breuer M, Rodi W. Large-eddy simulation of turbulent flow through a straight square duct and a 180° bend//Voke PR, Kleiser L, Chollet JP, eds. Direct and Large-Eddy Simulation I. Netherlands:Kluwer, 1994. 273-285
    [21] Hinterberger C, Frohlich J, Rodi W. Three-dimensional and depth-averaged large-eddy simulations of some shallow water flows. Journal of Hydraulic Engineering-ASCE, 2007, 133(8):857-872 doi: 10.1061/(ASCE)0733-9429(2007)133:8(857)
    [22] Stoesser T, Nikora V. Flow structure over square bars at intermediate submergence:large eddy simulation (LES) study of bar spacing effect. Acta Geophysica, 2008, 56(3):876-893 http://cn.bing.com/academic/profile?id=f5d4233a16d5117f364ce8114d9eabc8&encoded=0&v=paper_preview&mkt=zh-cn
    [23] Stoesser T, Ruether N, Olsen NRB. Calculation of primary and secondary flow and boundary shear stresses in a meandering channel. Advances in Water Resources, 2010, 33(2):158-170 doi: 10.1016/j.advwatres.2009.11.001
    [24] Zhu J. A low-diffusive and oscillation-free convection scheme. Communications in Applied Numerical Methods, 1991, 7(3):225-232 doi: 10.1002/(ISSN)1555-2047
    [25] Stone HL. Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM Journal on Numerical Analysis, 1968, 5(3):530-558 doi: 10.1137/0705044
    [26] Celik I, Rodi W. Modeling suspended sediment transport in nonequilibrium situations. Journal of Hydraulic Engineering-ASCE, 1988, 114(10):1157-1191 doi: 10.1061/(ASCE)0733-9429(1988)114:10(1157)
    [27] van Rijn LC. Sediment transport, part Ⅱ:suspended load transport. Journal of Hydraulic Engineering-ASCE, 1984, 110(11):1613-1641 doi: 10.1061/(ASCE)0733-9429(1984)110:11(1613)
    [28] Werner H, Wengle H. Large-eddy simulation of turbulent flow over and around a cube in a plate channel//Proceeding of 8th Symposium on Turbulent Shear Flows, 1991. 155-168
    [29] Mito Y, Hanratty TJ, Zandonade P, et al. Flow visualization of super bursts and of the Log-Layer in a DNS at Reτ=950. Flow Turbulence and Combustion, 2007, 79(2):175-189 doi: 10.1007/s10494-007-9082-6
    [30] Wu W, Rodi W, Wenka T. 3D numerical modeling of flow and sediment transport in open channels. Journal of Hydraulic Engineering-ASCE, 2000, 126(1):4-15 doi: 10.1061/(ASCE)0733-9429(2000)126:1(4)
    [31] Fang HW, Wang GQ. Three-dimensional mathematical model of suspended-sediment transport. Journal of Hydraulic Engineering-ASCE, 2000, 126(8):578-592 doi: 10.1061/(ASCE)0733-9429(2000)126:8(578)
  • 加载中
图(11)
计量
  • 文章访问数:  913
  • HTML全文浏览量:  63
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-25
  • 修回日期:  2016-11-15
  • 网络出版日期:  2016-11-18
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回