EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波与转捩边界层干扰非定常特性数值分析

童福林 李新亮 唐志共

童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1): 93-104. doi: 10.6052/0459-1879-16-224
引用本文: 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1): 93-104. doi: 10.6052/0459-1879-16-224
Tong Fulin, Li Xinliangy, Tang Zhigong. NUMERICAL ANALYSIS OF UNSTEADY MOTION IN SHOCK WAVE/TRANSITIONAL BOUNDARY LAYER INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104. doi: 10.6052/0459-1879-16-224
Citation: Tong Fulin, Li Xinliangy, Tang Zhigong. NUMERICAL ANALYSIS OF UNSTEADY MOTION IN SHOCK WAVE/TRANSITIONAL BOUNDARY LAYER INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104. doi: 10.6052/0459-1879-16-224

激波与转捩边界层干扰非定常特性数值分析

doi: 10.6052/0459-1879-16-224
基金项目: 

国家自然科学基金资助项目 91441103,11372330,11472278

详细信息
    通讯作者:

    童福林,助理研究员,主要研究方向:可压缩湍流直接数值模拟,高超声速气动热和热防护.E-mail:515363491@qq.com

  • 中图分类号: V211.3;O241.3

NUMERICAL ANALYSIS OF UNSTEADY MOTION IN SHOCK WAVE/TRANSITIONAL BOUNDARY LAYER INTERACTION

  • 摘要: 激波与边界层干扰的非定常问题是高速飞行器气动设计中基础研究内容之一.以往研究主要针对层流和湍流干扰,在分离激波低频振荡及其内在机理方面存在着上游机制和下游机制两类截然不同的理论解释.分析激波与转捩边界层干扰下非定常运动现象有助于进一步加深理解边界层状态以及分离泡结构对低频振荡特性的影响规律,为揭示其产生机理指出新的方向.采用直接数值模拟方法对来流马赫数2.9,24°压缩拐角内激波与转捩边界层干扰下激波的非定常运动特性进行了数值分析.通过在拐角上游平板特定的流向位置添加吹吸扰动激发流动转捩,使得进入拐角的边界层处于转捩初期阶段.在验证了计算程序可靠性的基础上,详细分析了转捩干扰下激波运动的间歇性和振荡特征,着重研究了分离泡展向三维结构对激波振荡特性的影响规律,最后还初步探索了转捩干扰下激波低频振荡产生的物理机制.研究结果表明:分离激波的非定常运动仍存在强间歇性和低频振荡特征,其时间尺度约为上游无干扰区内脉动信号特征尺度的10倍量级;分离泡展向三维结构不会对分离激波的低频振荡特征产生实质影响.依据瞬态脉动流场的低通滤波结果,转捩干扰下激波低频振荡的诱因来源于拐角干扰区下游,与流场中分离泡的收缩/膨胀运动存在一定的关联.

     

  • 图  1  压缩拐角计算模型示意图

    Figure  1.  Illustration of compression ramp

    图  2  时空平均物面压力及摩阻系数分布

    Figure  2.  Distribution of mean pressure,skin-friction coefficient at turbulent interaction

    图  3  典型特征点物面脉动压力信号及其功率谱密度分布

    Figure  3.  Wall-pressure signals and power spectral density at different stream wise locations

    图  4  展向中心线沿流向各测点处压力信号的加权功率谱密度分布云图

    Figure  4.  Contours of the weighted power spectral density of wall \pressure signals

    图  5  瞬态密度梯度等值面

    Figure  5.  Isosurface of the instantaneous density gradient

    图  6  时间平均流场结构

    Figure  6.  Time-averaged flowfield at ramp corner

    图  7  压力测点分布

    Figure  7.  Distribution of wall-pressure signal points

    图  8  物面压力脉动均方差及间歇因子分布

    Figure  8.  Distribution of stardand deviation of wall-pressure fluctuation and intermittency function

    图  9  典型特征点压力信号(左)及其功率谱密度分布(右)

    Figure  9.  Wall-pressure signals (left) and power spectral density (right) at various locations

    图  10  压力信号功率谱密度分布云图

    Figure  10.  Contours of weighted power spectral density of wall pressure signals

    图  11  压缩拐角内物面瞬时脉动压力信号的低通滤波值

    Figure  11.  Low-pass filtered instantaneous wall-pressure fluctuations at P2

    图  12  低通滤波瞬时流场脉动压力云图

    Figure  12.  Low-pass filtered instantaneous pressure fluctuation flow fields

    图  13  低通滤波瞬态流场结构

    Figure  13.  Low-pass filtered instantaneous flow fields

  • [1] Holden MS. Reviews of aerothermal problems associated with hypersonic flight. AIAA paper, 1986-0267, 1986 http://cn.bing.com/academic/profile?id=9299ce7c31d3f502077b4b4eeaa70d82&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Delery J. Shock wave/turbulent boundary layer interaction, its control. Progress in Aerospace Sciences, 1985, 22(1):209-280 http://cn.bing.com/academic/profile?id=d20c243550ec1abdacb8fb0380df3b1d&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Dolling DS. Fifty years of shock-wave/boundary-layer interaction research:what next? AIAA Journal, 2001, 39(8):1517-1530 doi: 10.2514/2.1476
    [4] Clemens NT, Narayanaswamy V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 2014, 46:469-492 doi: 10.1146/annurev-fluid-010313-141346
    [5] Gaitonde DV. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 2015, 72(1):80-99
    [6] Dolling DS, Murphy MT. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA Journal, 1983, 21(12):1628-1634 doi: 10.2514/3.60163
    [7] Erengil ME, Dolling DS. Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA Journal, 1991, 29(5):728-735 doi: 10.2514/3.10647
    [8] Touber E, Sham ND. Large eddy simulation of low frequency unsteadiness in a turbulent shock induced separation bubble. Theoretical, Computational Fluid Dynamics, 2009, 23(1):79-107 http://cn.bing.com/academic/profile?id=277660df8eb90e9ee7f23e303473a0c7&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Dussauge JP, Dupont P. Unsteadiness in shock wave boundary layer interactions with separation. Aerospace Science and Technology, 2006, 10(1):85-91 http://cn.bing.com/academic/profile?id=23f3c9198a4a835b4ab1c150783da41f&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Souverein LJ, Dupont P. Effect of interaction strength on unsteadiness in turbulent shock wave induced separations. AIAA Journal, 2010, 48(7):1480-1493 doi: 10.2514/1.J050093
    [11] Wu PP, Miles RB. Megahertz visualization of compression corner shock structures. AIAA Journal, 2001, 39:1542-1546 doi: 10.2514/2.1478
    [12] Dussauge JP, Piponniau S. Shock/boundary layer interaction:possible sources of unsteadiness. Journal of Fluids and Structures, 2008, 24:1166-1175 doi: 10.1016/j.jfluidstructs.2008.06.003
    [13] Weiss J, Chokani N. Effect of free stream noise on shock wave turbulent boundary layer interactions. AIAA Journal, 2007, 45(9):2352-2355 doi: 10.2514/1.30083
    [14] Reopoulos J, Muck KC. Some new aspects of the shock wave boundary layer interaction in compression ramp corner. Journal of Fluid Mechanics, 1987, 180:405-428 doi: 10.1017/S0022112087001873
    [15] Brusniak L, Dolling DS. Physics of unsteady blunt fin induced shock wave/turbulent boundary layer interactions. Journal of Fluid Mechanics, 1994, 273:375-409 doi: 10.1017/S0022112094001989
    [16] Unalmis OH, Dolling DS. Decay of wall pressure field structure of a mach 5 adiabatic turbulent boundary. AIAA paper 1994-2363, 1994
    [17] Beresh SJ, Clemens NT. Relationship between upstream turbulent boundary velocity fluctuations, separation shock unsteadiness. AIAA Journal, 2002, 40(12):2412-2422 doi: 10.2514/2.1609
    [18] Ganapathisubramani B, Clemens NT. Low frequency dynamics of shock induced separation in a compression ramp interaction. Journal of Fluid Mechanics, 2009, 636:397-425 doi: 10.1017/S0022112009007952
    [19] Humble RA, Scarano F. Unsteady aspects of an incident shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2009, 635:47-74 doi: 10.1017/S0022112009007630
    [20] Thomas FO, Putnam CM, Chu HC. On the mechanism of unsteady shock oscillation in shock wave turbulent boundary layer interactions. Experiments in Fluids, 1994, 18(1):69-81 http://cn.bing.com/academic/profile?id=6deeab260c71e2785c6c8d65d4963597&encoded=0&v=paper_preview&mkt=zh-cn
    [21] Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25. Physics of Fluids, 2006, 18(1):065113 http://cn.bing.com/academic/profile?id=2cbf1a9e91ef347318921d41edf329ec&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Touber E, Sham ND. Low-order stochastic modeling of low frequency motions in reflected shock wave boundary layer interactions. Journal of Fluid Mechanics, 2011, 671:417-465 doi: 10.1017/S0022112010005811
    [23] Piponniau S, Dussauge JP. A simple model for low frequency unsteadiness in shock induced separation. Journal of Fluid Mechanics, 2009, 629:87-108 doi: 10.1017/S0022112009006417
    [24] Wu M, Martin MP. Analysis of shock motion in shock wave, turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 2008, 594:71-83 http://cn.bing.com/academic/profile?id=a64e4590c153ebccbf4b78c3cfcafa50&encoded=0&v=paper_preview&mkt=zh-cn
    [25] Priebe S, Wu M, Martin MP. Low frequency un-steadiness in shock wave turbulent boundary layer in-teraction. Journal of Fluid Mechanics, 2012, 699:1-49 doi: 10.1017/jfm.2011.560
    [26] Grilli M, Schmid PJ. Analysis of unsteady behavior in shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 700:16-28 doi: 10.1017/jfm.2012.37
    [27] Li XL, Fu DX, Ma YW. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658 http://cn.bing.com/academic/profile?id=7a5fdcc36ec11240a1d36600fac751d6&encoded=0&v=paper_preview&mkt=zh-cn
    [28] Tokura Y, Maekawa H. DNS of a spatially evolving transitional turbulent boundary layer with impinging shock wave. AIAA paper 2011-729, 2011 http://cn.bing.com/academic/profile?id=72c33590c1005562977ab0263182770c&encoded=0&v=paper_preview&mkt=zh-cn
    [29] Bookey P, Wyckham C, Smits A, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA paper 2005-309, 2005 http://cn.bing.com/academic/profile?id=3e09988d53efac2baabbaf0457a312b6&encoded=0&v=paper_preview&mkt=zh-cn
    [30] Martin MP, Taylor EM, Wu M. A width-optimized WENO scheme for the effective direct nu-merical simulation of compressible turbulence. Journal of Computational Physics, 2006, 220(1):270-289 doi: 10.1016/j.jcp.2006.05.009
    [31] Dupont P, Haddad C, Debieve JF. Space, time organization in a shock induce separated boundary layer. Journal of Fluid Mechanics, 2006, 559:255-277 doi: 10.1017/S0022112006000267
    [32] Dolling DS, Or CT. Unsteadiness of the shock wave structure in attached, separated compression ramp flows. Experiments in Fluids, 1985, 3(1):24-32 doi: 10.1007/BF00285267
  • 加载中
图(13)
计量
  • 文章访问数:  1055
  • HTML全文浏览量:  118
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-08
  • 修回日期:  2016-11-16
  • 网络出版日期:  2016-11-21
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回