[1] |
Holden MS. Reviews of aerothermal problems associated with hypersonic flight. AIAA paper, 1986-0267, 1986 http://cn.bing.com/academic/profile?id=9299ce7c31d3f502077b4b4eeaa70d82&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
Delery J. Shock wave/turbulent boundary layer interaction, its control. Progress in Aerospace Sciences, 1985, 22(1):209-280 http://cn.bing.com/academic/profile?id=d20c243550ec1abdacb8fb0380df3b1d&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Dolling DS. Fifty years of shock-wave/boundary-layer interaction research:what next? AIAA Journal, 2001, 39(8):1517-1530 doi: 10.2514/2.1476
|
[4] |
Clemens NT, Narayanaswamy V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 2014, 46:469-492 doi: 10.1146/annurev-fluid-010313-141346
|
[5] |
Gaitonde DV. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 2015, 72(1):80-99
|
[6] |
Dolling DS, Murphy MT. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA Journal, 1983, 21(12):1628-1634 doi: 10.2514/3.60163
|
[7] |
Erengil ME, Dolling DS. Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA Journal, 1991, 29(5):728-735 doi: 10.2514/3.10647
|
[8] |
Touber E, Sham ND. Large eddy simulation of low frequency unsteadiness in a turbulent shock induced separation bubble. Theoretical, Computational Fluid Dynamics, 2009, 23(1):79-107 http://cn.bing.com/academic/profile?id=277660df8eb90e9ee7f23e303473a0c7&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
Dussauge JP, Dupont P. Unsteadiness in shock wave boundary layer interactions with separation. Aerospace Science and Technology, 2006, 10(1):85-91 http://cn.bing.com/academic/profile?id=23f3c9198a4a835b4ab1c150783da41f&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Souverein LJ, Dupont P. Effect of interaction strength on unsteadiness in turbulent shock wave induced separations. AIAA Journal, 2010, 48(7):1480-1493 doi: 10.2514/1.J050093
|
[11] |
Wu PP, Miles RB. Megahertz visualization of compression corner shock structures. AIAA Journal, 2001, 39:1542-1546 doi: 10.2514/2.1478
|
[12] |
Dussauge JP, Piponniau S. Shock/boundary layer interaction:possible sources of unsteadiness. Journal of Fluids and Structures, 2008, 24:1166-1175 doi: 10.1016/j.jfluidstructs.2008.06.003
|
[13] |
Weiss J, Chokani N. Effect of free stream noise on shock wave turbulent boundary layer interactions. AIAA Journal, 2007, 45(9):2352-2355 doi: 10.2514/1.30083
|
[14] |
Reopoulos J, Muck KC. Some new aspects of the shock wave boundary layer interaction in compression ramp corner. Journal of Fluid Mechanics, 1987, 180:405-428 doi: 10.1017/S0022112087001873
|
[15] |
Brusniak L, Dolling DS. Physics of unsteady blunt fin induced shock wave/turbulent boundary layer interactions. Journal of Fluid Mechanics, 1994, 273:375-409 doi: 10.1017/S0022112094001989
|
[16] |
Unalmis OH, Dolling DS. Decay of wall pressure field structure of a mach 5 adiabatic turbulent boundary. AIAA paper 1994-2363, 1994
|
[17] |
Beresh SJ, Clemens NT. Relationship between upstream turbulent boundary velocity fluctuations, separation shock unsteadiness. AIAA Journal, 2002, 40(12):2412-2422 doi: 10.2514/2.1609
|
[18] |
Ganapathisubramani B, Clemens NT. Low frequency dynamics of shock induced separation in a compression ramp interaction. Journal of Fluid Mechanics, 2009, 636:397-425 doi: 10.1017/S0022112009007952
|
[19] |
Humble RA, Scarano F. Unsteady aspects of an incident shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2009, 635:47-74 doi: 10.1017/S0022112009007630
|
[20] |
Thomas FO, Putnam CM, Chu HC. On the mechanism of unsteady shock oscillation in shock wave turbulent boundary layer interactions. Experiments in Fluids, 1994, 18(1):69-81 http://cn.bing.com/academic/profile?id=6deeab260c71e2785c6c8d65d4963597&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25. Physics of Fluids, 2006, 18(1):065113 http://cn.bing.com/academic/profile?id=2cbf1a9e91ef347318921d41edf329ec&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
Touber E, Sham ND. Low-order stochastic modeling of low frequency motions in reflected shock wave boundary layer interactions. Journal of Fluid Mechanics, 2011, 671:417-465 doi: 10.1017/S0022112010005811
|
[23] |
Piponniau S, Dussauge JP. A simple model for low frequency unsteadiness in shock induced separation. Journal of Fluid Mechanics, 2009, 629:87-108 doi: 10.1017/S0022112009006417
|
[24] |
Wu M, Martin MP. Analysis of shock motion in shock wave, turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 2008, 594:71-83 http://cn.bing.com/academic/profile?id=a64e4590c153ebccbf4b78c3cfcafa50&encoded=0&v=paper_preview&mkt=zh-cn
|
[25] |
Priebe S, Wu M, Martin MP. Low frequency un-steadiness in shock wave turbulent boundary layer in-teraction. Journal of Fluid Mechanics, 2012, 699:1-49 doi: 10.1017/jfm.2011.560
|
[26] |
Grilli M, Schmid PJ. Analysis of unsteady behavior in shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 700:16-28 doi: 10.1017/jfm.2012.37
|
[27] |
Li XL, Fu DX, Ma YW. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658 http://cn.bing.com/academic/profile?id=7a5fdcc36ec11240a1d36600fac751d6&encoded=0&v=paper_preview&mkt=zh-cn
|
[28] |
Tokura Y, Maekawa H. DNS of a spatially evolving transitional turbulent boundary layer with impinging shock wave. AIAA paper 2011-729, 2011 http://cn.bing.com/academic/profile?id=72c33590c1005562977ab0263182770c&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
Bookey P, Wyckham C, Smits A, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA paper 2005-309, 2005 http://cn.bing.com/academic/profile?id=3e09988d53efac2baabbaf0457a312b6&encoded=0&v=paper_preview&mkt=zh-cn
|
[30] |
Martin MP, Taylor EM, Wu M. A width-optimized WENO scheme for the effective direct nu-merical simulation of compressible turbulence. Journal of Computational Physics, 2006, 220(1):270-289 doi: 10.1016/j.jcp.2006.05.009
|
[31] |
Dupont P, Haddad C, Debieve JF. Space, time organization in a shock induce separated boundary layer. Journal of Fluid Mechanics, 2006, 559:255-277 doi: 10.1017/S0022112006000267
|
[32] |
Dolling DS, Or CT. Unsteadiness of the shock wave structure in attached, separated compression ramp flows. Experiments in Fluids, 1985, 3(1):24-32 doi: 10.1007/BF00285267
|