EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多项式约束的三角平动点平面周期轨道设计方法

钱霙婧 翟冠峤 张伟

钱霙婧, 翟冠峤, 张伟. 基于多项式约束的三角平动点平面周期轨道设计方法[J]. 力学学报, 2017, 49(1): 154-164. doi: 10.6052/0459-1879-16-215
引用本文: 钱霙婧, 翟冠峤, 张伟. 基于多项式约束的三角平动点平面周期轨道设计方法[J]. 力学学报, 2017, 49(1): 154-164. doi: 10.6052/0459-1879-16-215
Qian Yingjing, Zhai Guanqiao, Zhang Wei. PLANAR PERIODIC ORBIT CONSTRUCTION AROUND THE TRIANGULAR LIBRATION POINTS BASED ON POLYNOMIAL CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 154-164. doi: 10.6052/0459-1879-16-215
Citation: Qian Yingjing, Zhai Guanqiao, Zhang Wei. PLANAR PERIODIC ORBIT CONSTRUCTION AROUND THE TRIANGULAR LIBRATION POINTS BASED ON POLYNOMIAL CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 154-164. doi: 10.6052/0459-1879-16-215

基于多项式约束的三角平动点平面周期轨道设计方法

doi: 10.6052/0459-1879-16-215
基金项目: 

国家自然科学基金资助项目 11402007

详细信息
    通讯作者:

    张伟,教授,主要研究方向:非线性动力学.E-mail:sandyzhang0@163.com

  • 中图分类号: V412.4

PLANAR PERIODIC ORBIT CONSTRUCTION AROUND THE TRIANGULAR LIBRATION POINTS BASED ON POLYNOMIAL CONSTRAINTS

  • 摘要: 平动点是圆型限制性三体问题中的五个平衡解.其中,三角平动点在平面问题中具有“中心×中心”的动力学特性,其附近存在着大量的周期轨道,研究这些周期轨道的构建方法在深空探测中具有理论及工程意义.本文从振动角度分析周期轨道,通过多项式展开法构建出主坐标下周期轨道两个运动方向之间的渐近关系.从新的角度分析了系统的动力学特性和平面周期运动两个方向内在关联以及物理规律.这种多项式形式的关系式,可以作为约束条件用于数值微分修正算法中,通过迭代的方式寻找周期轨道.数值仿真算例验证了方法的正确性及精确性.文章从振动的角度对周期轨道进行分析,改进了微分修正算法.提出的方法可以被拓展至圆型/椭圆型限制性三体问题的三维周期轨道构建中.

     

  • 图  1  坐标系示意图

    Figure  1.  Schematic for coordinate systems

    图  2  短周期轨道微分修正结果图

    Figure  2.  Differential correction for the short-period periodic motion

    图  3  微分修正前后短周期轨道图

    Figure  3.  Comparison of the trajectories numerically integrates with the linearized initial condition and corrected initial condition for the short-period motion

    图  4  长周期轨道微分修正结果图

    Figure  4.  Differential correction for the long-period periodic motion

    图  5  微分修正前后长周期轨道图

    Figure  5.  Comparison of the trajectories numerically integrates with the linearized initial condition and corrected initial condition for the long-period motion

  • [1] Brouwer D, Clemennce GM. Methods of Celestial Mechanics. 2nd edn. Academic Press, 1985
    [2] Beuler G. Methods of Celestial Mechanics. Berlin, Heideberg:Springer-Verlag, 2005
    [3] 刘林.人造地球卫星轨道力学.北京:高等教育出版社,1992

    Liu Lin. Orbit Dynamics of the Artificial Earth Satellite. Beijing:The Higher Education Press, 1992(in Chinese)
    [4] 刘林.航天器轨道理论. 北京:国防工业出版社, 2000

    Liu Lin. The spacecraft orbit theory. Beijing:National Defence Industry Press, 2000(in Chinese)
    [5] Richardson DL. Analytic construction of periodic-orbits about the collinear points. Celestial Mechanics, 1980, 22(3):241-253 doi: 10.1007/BF01229511
    [6] Erdi B. 3-dimensional motion of trojan asteroids. Celestial Mechanics, 1978, 18(2):141-161 doi: 10.1007/BF01228712
    [7] Zagouras CG. 3-dimensional periodic-orbits about the triangular equilibrium points of the restricted problem of 3 bodies. Celestial Mechanics, 1985, 37(1):27-46 doi: 10.1007/BF01230339
    [8] Lei HL, Xu B. High-order solutions around triangular libration points in the elliptic restricted three-body problem and applications to low energy transfers. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):3374-3398 doi: 10.1016/j.cnsns.2014.01.019
    [9] Zhao L. Quasi-periodic solutions of the spatial lunar three-body problem. Celestial Mechanics & Dynamical Astronomy, 2014, 119(1):91-118 http://cn.bing.com/academic/profile?id=3f41e89b93334c1bf4a3c6eed8098eda&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Goodrich E. Numerical determination of short-period trojan orbits in the restricted three-body problem. The Astronomical Journal, 1966, 71(2):88-93 http://cn.bing.com/academic/profile?id=16e6c1ef0377b51d727c25e4a420c721&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Bray T, Goudas L. Doubly symmetric orbits about the collinear Lagrangian points. The Astronomical Journal, 1967, 72(2):202-213 http://cn.bing.com/academic/profile?id=bf19f16d1d453bc4b46996760409894f&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Zagouras C, Kazantzis P. Three-dimensional periodic oscillations generating from plane periodic ones around the collinear Lagrangian points. Astrophysics and Space Science, 1979, 61(2):389-409 doi: 10.1007/BF00640540
    [13] Howell KC. Three-dimensional periodic "halo" orbits. Celestial Mechanics, 1984, 32(1):53-71 doi: 10.1007/BF01358403
    [14] Hughes S, Cooley D, Guzman JA. direct method for fuel optimal maneuvers of distributed spacecraft in multiple flight regimes//Space Flight Mechanics Meeting, Copper Mountain, Colorado, 2005
    [15] Marchand B, Howell KC. A spherical formations near the libration points in the sun-earth/moon ephemeris system//14th AAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii, 2004
    [16] Andreu MA, Simo C. Translunar halo orbits in the quasi-bicircular problem//NATO ASI, 1997:309-314
    [17] Andreu MA. Dynamic in the center manifold around L2 in quasi-bicircular problem. Celestial Mechanics and Dynamical Astronomy, 2002, 84(2):105-133 doi: 10.1023/A:1019979414586
    [18] Parker J, Born GH. Direct lunar halo orbit transfers//In 17th AAS/AIAA Space Flight Mechanics Meeting, 2007, January 28-February 1(AAS):07-229
    [19] Perozzi E, Salvo A. Novel spaceways for reaching the moon:an assessment for exploration. Celestial Mechanics & Dynamical Astronomy, 2008, 102(1-3):207-218 http://cn.bing.com/academic/profile?id=f7705d394fbb1ac12b51476a9c072fff&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Parker J, Martin L. Shoot the Moon 3D//AAS/AIAA Space Flight Mechanics Meeting, 2005, August 7-11(Paper AAS-05-383)
    [21] Qian YJ, Liu Y, Zhang W, et al. Station keeping strategy for quasi-periodic orbit around Earth-Moon L2 point//Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016
    [22] 侯锡云.平动点的动力学特征及其应用.[博士论文]. 南京:南京大学, 2008

    Hou Xiyun. Dynamic characteristics and applications of the libration point.[PhD Thesis]. Nanjing:Nanjing University, 2008(in Chinese)
    [23] Shaw SW, Pierre C. Normal-modes for nonlinear vibratory-systems. Journal of Sound and Vibration, 1993,164(1):85-124 doi: 10.1006/jsvi.1993.1198
    [24] Shaw SW, Pierre C. Normal-modes of vibration for nonlinear continuous systems. Journal of Sound and Vibration, 1994, 169(3):319-347 doi: 10.1006/jsvi.1994.1021
    [25] Shaw SW. An invariant manifold approach to nonlinear normal-modes of oscillation. Journal of Nonlinear Science, 1994, 4(5):419-448 http://cn.bing.com/academic/profile?id=d33eaed3e06fd45cde6f22bbe17887fb&encoded=0&v=paper_preview&mkt=zh-cn
    [26] Arquier R. Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Computers & Structures, 2006, 84(24-25):1565-1576 http://cn.bing.com/academic/profile?id=b100078e99dee6e19e30b97e770fa9a6&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Vakakis AF, Manevitch L, Mikhlin Y, et al. Normal Modes and Localization in Nonlinear Systems. New York:John Wiley, 1996
    [28] Szebehely V. Theory of Orbits. New York and London:Academic Press, 1967
    [29] Jorba A, Masdemont J. Dynamics in the centre manifold of the collinear points of the restricted three body problem. Physica D, 1999, 132:189-213 doi: 10.1016/S0167-2789(99)00042-1
    [30] 刘林,侯锡云.深空探测器轨道力学.北京:电子工业出版社, 2012

    Liu Lin, Hou Xiyun. Orbital Mechanics of the Deep Space Probe. Beijing:Publishing House of Electronics Industry, 2012(in Chinese)
    [31] Keller HB. Numerical solution of two point boundary value problems. Society for Industrial and Applied Mathematics, 1976
  • 加载中
图(5)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  56
  • PDF下载量:  677
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-01
  • 修回日期:  2016-10-11
  • 网络出版日期:  2016-10-18
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回