[1] |
Brouwer D, Clemennce GM. Methods of Celestial Mechanics. 2nd edn. Academic Press, 1985
|
[2] |
Beuler G. Methods of Celestial Mechanics. Berlin, Heideberg:Springer-Verlag, 2005
|
[3] |
刘林.人造地球卫星轨道力学.北京:高等教育出版社,1992Liu Lin. Orbit Dynamics of the Artificial Earth Satellite. Beijing:The Higher Education Press, 1992(in Chinese)
|
[4] |
刘林.航天器轨道理论. 北京:国防工业出版社, 2000Liu Lin. The spacecraft orbit theory. Beijing:National Defence Industry Press, 2000(in Chinese)
|
[5] |
Richardson DL. Analytic construction of periodic-orbits about the collinear points. Celestial Mechanics, 1980, 22(3):241-253 doi: 10.1007/BF01229511
|
[6] |
Erdi B. 3-dimensional motion of trojan asteroids. Celestial Mechanics, 1978, 18(2):141-161 doi: 10.1007/BF01228712
|
[7] |
Zagouras CG. 3-dimensional periodic-orbits about the triangular equilibrium points of the restricted problem of 3 bodies. Celestial Mechanics, 1985, 37(1):27-46 doi: 10.1007/BF01230339
|
[8] |
Lei HL, Xu B. High-order solutions around triangular libration points in the elliptic restricted three-body problem and applications to low energy transfers. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9):3374-3398 doi: 10.1016/j.cnsns.2014.01.019
|
[9] |
Zhao L. Quasi-periodic solutions of the spatial lunar three-body problem. Celestial Mechanics & Dynamical Astronomy, 2014, 119(1):91-118 http://cn.bing.com/academic/profile?id=3f41e89b93334c1bf4a3c6eed8098eda&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Goodrich E. Numerical determination of short-period trojan orbits in the restricted three-body problem. The Astronomical Journal, 1966, 71(2):88-93 http://cn.bing.com/academic/profile?id=16e6c1ef0377b51d727c25e4a420c721&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
Bray T, Goudas L. Doubly symmetric orbits about the collinear Lagrangian points. The Astronomical Journal, 1967, 72(2):202-213 http://cn.bing.com/academic/profile?id=bf19f16d1d453bc4b46996760409894f&encoded=0&v=paper_preview&mkt=zh-cn
|
[12] |
Zagouras C, Kazantzis P. Three-dimensional periodic oscillations generating from plane periodic ones around the collinear Lagrangian points. Astrophysics and Space Science, 1979, 61(2):389-409 doi: 10.1007/BF00640540
|
[13] |
Howell KC. Three-dimensional periodic "halo" orbits. Celestial Mechanics, 1984, 32(1):53-71 doi: 10.1007/BF01358403
|
[14] |
Hughes S, Cooley D, Guzman JA. direct method for fuel optimal maneuvers of distributed spacecraft in multiple flight regimes//Space Flight Mechanics Meeting, Copper Mountain, Colorado, 2005
|
[15] |
Marchand B, Howell KC. A spherical formations near the libration points in the sun-earth/moon ephemeris system//14th AAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii, 2004
|
[16] |
Andreu MA, Simo C. Translunar halo orbits in the quasi-bicircular problem//NATO ASI, 1997:309-314
|
[17] |
Andreu MA. Dynamic in the center manifold around L2 in quasi-bicircular problem. Celestial Mechanics and Dynamical Astronomy, 2002, 84(2):105-133 doi: 10.1023/A:1019979414586
|
[18] |
Parker J, Born GH. Direct lunar halo orbit transfers//In 17th AAS/AIAA Space Flight Mechanics Meeting, 2007, January 28-February 1(AAS):07-229
|
[19] |
Perozzi E, Salvo A. Novel spaceways for reaching the moon:an assessment for exploration. Celestial Mechanics & Dynamical Astronomy, 2008, 102(1-3):207-218 http://cn.bing.com/academic/profile?id=f7705d394fbb1ac12b51476a9c072fff&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Parker J, Martin L. Shoot the Moon 3D//AAS/AIAA Space Flight Mechanics Meeting, 2005, August 7-11(Paper AAS-05-383)
|
[21] |
Qian YJ, Liu Y, Zhang W, et al. Station keeping strategy for quasi-periodic orbit around Earth-Moon L2 point//Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016
|
[22] |
侯锡云.平动点的动力学特征及其应用.[博士论文]. 南京:南京大学, 2008Hou Xiyun. Dynamic characteristics and applications of the libration point.[PhD Thesis]. Nanjing:Nanjing University, 2008(in Chinese)
|
[23] |
Shaw SW, Pierre C. Normal-modes for nonlinear vibratory-systems. Journal of Sound and Vibration, 1993,164(1):85-124 doi: 10.1006/jsvi.1993.1198
|
[24] |
Shaw SW, Pierre C. Normal-modes of vibration for nonlinear continuous systems. Journal of Sound and Vibration, 1994, 169(3):319-347 doi: 10.1006/jsvi.1994.1021
|
[25] |
Shaw SW. An invariant manifold approach to nonlinear normal-modes of oscillation. Journal of Nonlinear Science, 1994, 4(5):419-448 http://cn.bing.com/academic/profile?id=d33eaed3e06fd45cde6f22bbe17887fb&encoded=0&v=paper_preview&mkt=zh-cn
|
[26] |
Arquier R. Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Computers & Structures, 2006, 84(24-25):1565-1576 http://cn.bing.com/academic/profile?id=b100078e99dee6e19e30b97e770fa9a6&encoded=0&v=paper_preview&mkt=zh-cn
|
[27] |
Vakakis AF, Manevitch L, Mikhlin Y, et al. Normal Modes and Localization in Nonlinear Systems. New York:John Wiley, 1996
|
[28] |
Szebehely V. Theory of Orbits. New York and London:Academic Press, 1967
|
[29] |
Jorba A, Masdemont J. Dynamics in the centre manifold of the collinear points of the restricted three body problem. Physica D, 1999, 132:189-213 doi: 10.1016/S0167-2789(99)00042-1
|
[30] |
刘林,侯锡云.深空探测器轨道力学.北京:电子工业出版社, 2012Liu Lin, Hou Xiyun. Orbital Mechanics of the Deep Space Probe. Beijing:Publishing House of Electronics Industry, 2012(in Chinese)
|
[31] |
Keller HB. Numerical solution of two point boundary value problems. Society for Industrial and Applied Mathematics, 1976
|