EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的均匀各向同性湍流初始化方法

秦泽聪 方乐

秦泽聪, 方乐. 一种改进的均匀各向同性湍流初始化方法[J]. 力学学报, 2016, 48(6): 1319-1325. doi: 10.6052/0459-1879-16-180
引用本文: 秦泽聪, 方乐. 一种改进的均匀各向同性湍流初始化方法[J]. 力学学报, 2016, 48(6): 1319-1325. doi: 10.6052/0459-1879-16-180
Qin Zecong, Fang Le. AN IMPROVED METHOD FOR INITIALIZING HOMOGENEOUS ISOTROPIC TURBULENT FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1319-1325. doi: 10.6052/0459-1879-16-180
Citation: Qin Zecong, Fang Le. AN IMPROVED METHOD FOR INITIALIZING HOMOGENEOUS ISOTROPIC TURBULENT FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1319-1325. doi: 10.6052/0459-1879-16-180

一种改进的均匀各向同性湍流初始化方法

doi: 10.6052/0459-1879-16-180
基金项目: 国家自然科学基金资助项目(11202013,11302012,51420105008).
详细信息
    通讯作者:

    方乐,副教授,主要研究方向:流体力学.E-mail:le.fang@zoho.com

  • 中图分类号: O357.1

AN IMPROVED METHOD FOR INITIALIZING HOMOGENEOUS ISOTROPIC TURBULENT FLOWS

  • 摘要: 均匀各向同性湍流是一种最简单的湍流理想状态,也是湍流基础理论研究的最重要对象之一.为了用数值方法产生均匀各向同性湍流场,一般采用Rogallo提出的方法在谱空间生成初始场,然后再转换到物理空间.研究表明,由该方法生成的初始湍流场在3个棱向上呈各向异性,在结构函数和速度概率密度分布上均有体现.尽管在初始场样本很多时,这种各向异性可以在平均意义上消除,但作为数值模拟采用的单个流场则波动较大,不利于在实际计算中作为单个初始场生成各向同性湍流.在此基础上提出一种改进的Rogallo初始化方法,称为模量平均法,将Rogallo方法在3个轴向分别进行,并进行模量平均,最后采用能谱进行模量控制.这种方法可以一方面保持初始场能谱,另一方面减小单个流场的各向异性波动,以产生各向同性程度更佳的单个初始场.在统计意义上,新方法可以分别将结构函数和速度概率密度的相对标准差减小约10%.

     

  • 1 张兆顺,崔桂香,许春晓. 湍流大涡数值模拟的理论与应用. 北京:清华大学出版社,2008(Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao. Theory and Application of Large Eddy Numerical Simulation. Beijing:Tsinghua University Press, 2008(in Chinese))
    2 Pope SB. Turbulent Flows. New York:Cambridge University Press, 2000
    3 李瑞霞,柳朝晖,贺铸等. 各向同性湍流内颗粒碰撞率的直接模拟研究. 力学学报,2006,38(1):25-32(Li Ruixia, Liu Zhaohui, He Zhu, et al. Direct numerical simulation of inertial particle collisions in isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):25-32(in Chinese))
    4 李新亮,傅德薰,马延文. 可压缩均匀各向同性湍流的直接数值模拟. 中国科学(A辑),2002,32(8):716-724(Li Xinliang, Fu Dexun, Ma Yanwen. Direct numerical simulation of compressible homogeneous isotropic turbulence. Science in China(Series A), 2002, 32(8):716-724(in Chinese))
    5 张曙光,雷磊,何国威. 均匀各向同性湍流的频率波数能量谱. 力学学报,2003,35(3):317-320(Zhang Shuguang, Lei Lei, He Guowei. Frequency-wavenumber energy spectra in isotropic turbulence. Acta Mechanica Sinica, 2003, 35(3):317-320(in Chinese))
    6 赵松年,胡非. 湍流问题:如何看待"均匀各向同性湍流"?中国科学:物理学力学天文学,2015,45(2):024701(Zhao Songnian, Hu Fei. Turbulence question:How do view "the homogeneous and isotropic turbulence"? Science China Physics, Mechanics & Astronomy, 2015, 45(2):024701(in Chinese))
    7 方乐,杨云柯,王洪涛等. 全场离散Tophat过滤操作的快速算法. 数值计算与计算机应用,2009,30(3):218-224(Fang Le, Yang Yunke, Wang Hongwei, et al. A rapid algorithm for Tophat filter operation in discrete field. Journal on Numerical and Computer Applications, 2009, 30(3):218-224(in Chinese))
    8 方乐,崔桂香,许春晓等. 标量湍流的能量传输特性. 计算物理, 2006,23(6):692-698(Fang Le, Cui Guixiang, Xu Chunxiao, et al. Energy transfer in scalar turbulence. Chinese Journal of Computational Physics, 2006, 23(6):692-698(in Chinese))
    9 Stepanov R, Plunian F, Kessar M, et al. Systematic bias in the calculation of spectral density from a three-dimensional spatial grid. Physical Review E, 2014, 90(5):053309  
    10 Fang L, Cui GX, Xu CX, et al. Multi-scale analysis of energy transfer in scalar turbulence. Chinese Physics Letters, 2005, 22(11):2877  
    11 Cichowlas C, Bonaïti P, Debbasch F, et al. Effective dissipation and turbulence in spectrally truncated Euler flows. Physical Review Letters, 2005, 95(26):264502  
    12 Bos WJT, Bertoglio JP. Dynamics of spectrally truncated inviscid turbulence. Physics of Fluids, 2006, 18(7):071701  
    13 Brun C, Pumir A. Statistics of Fourier modes in a turbulent flow. Physical Review E, 2001, 63(5):056313  
    14 Qin ZC, Fang L, Fang J. How isotropic are turbulent flows generated by using periodic conditions in a cube? Physics Letters A, 2016, 380(13):1310-1317
    15 Hinze JO. Turbulence, 2nd edn. New York:McGraw-Hill International Book Company, 1975
    16 Fang L, Bos WJT, Jin GD. Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence. Physics of Fluids, 2015, 27(12):125102  
    17 马威,方乐,邵亮等. 可解尺度各向同性湍流的标度律. 力学学报,2011, 43(2):267-276(MaWei, Fang Le, Shao Liang, et al. Scaling law of resolved-scale isotropic turbulence. Chinse Journal of Theoretical and Applied Mechanics, 2011, 43(2):267-276(in Chinese))
    18 Fang L, Shao L, Bertoglio JP, et al. An improved velocity increment model based on Kolmogorov equation of filtered velocity. Physics of Fluids, 2009, 21(6):065108  
    19 Gotoh T, Fukayama D, Nakano T. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Physics of Fluids, 2002, 14(3):1065-1081  
    20 Cui GX, Zhou HB, Zhang ZS, et al. A new dynamic subgrid eddy viscosity model with application to turbulent channel flow. Physics of Fluids, 2004, 16(8):2835-2842  
    21 乔海军,李会元. 二维各向同性湍流直接数值模拟的六边形谱方法及GPU实现和优化. 数值计算与计算机应用,2013,34(6):147-160(Qiao Haijun, Li Huiyuan. Hexagonal spectral method for direct numerical simulation of two-dimensional homogeneous isotropic turbulence and their GPU implementation and optimization. Journal on Numerical Methods and Computer Applications, 2013, 34(6):147-160(in Chinese))
    22 Rogallo RS. Numerical experiments in homogeneous turbulence. Technical Report 81315, NASA, 1981
    23 Lesieur M. Turbulence in Fluids. Springer Science & Business Media, 2012
    24 Fang L, Zhu Y, Liu YW, et al. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgridscale modeling. Physics Letters A, 2015, 379(38):2331-2336  
    25 Fang L, Bos WJT, Shao L, et al. Time reversibility of Navier-Stokes turbulence and its implication for subgrid scale models. Journal of Turbulence, 2012(13):N3  
    26 Hearst RJ, Lavoie P. Velocity derivative skewness in fractalgenerated, non-equilibrium grid turbulence. Physics of Fluids, 2015, 27(7):071701  
    27 Fang L, Zhang YJ, Fang J, et al. Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Physical Review E, 2016, 94(2):023114  
    28 Zhao X, He GW. Space-time correlations of fluctuating velocities in turbulent shear flows. Physical Review E, 2009, 79(5):046316
    29 He GW, Zhang JB. Elliptic model for space-time correlations in turbulent shear flows. Physical Review E, 2006, 73(5):055303  
    30 Vassilicos JC. Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 2015, 47:95-114  
  • 加载中
计量
  • 文章访问数:  1437
  • HTML全文浏览量:  124
  • PDF下载量:  718
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-01
  • 修回日期:  2016-09-04
  • 刊出日期:  2016-11-18

目录

    /

    返回文章
    返回