A 2.5-D COUPLED FE-BE MODEL FOR THE DYNAMIC INTERACTION BETWEEN TUNNEL AND SATURATED SOIL
-
摘要: 针对饱和土中异形隧道的三维动力响应问题,建立了2.5维有限元与边界元耦合模型.将隧道结构视为弹性体,采用2.5维有限元建立隧道模型;将地基土视为饱和多孔介质,采用2.5维边界元建立饱和土体模型.借助组合辅助问题基本解消除了边界积分方程的奇异性.利用饱和土与隧道接触面的位移、面力连续和完全透水或完全不透水边界条件,实现2.5维有限元和边界元模型的耦合求解.模型具有计算效率高、适用范围广的优点.通过与完全透水和完全不透水边界条件下轴对称问题的半解析解以及单相介质的2.5维有限元与边界元耦合模型对比,验证了本文模型的正确性.最后利用该模型计算了饱和土体中类矩形隧道在移动载荷作用下的三维动力响应,分析了不同土体渗透性下位移及孔隙水压力沿隧道轴向、环向和深度的分布规律.结果表明:(1)孔隙水压力随土体渗透性增大而显著减小,位移受土体渗透性影响小;(2)位移及孔隙水压力在隧道环向主要分布在距载荷作用点两侧约2 m的范围内;(3)孔隙水压力沿深度的衰减比土体位移快,且孔隙水压力和轴向位移沿深度的分布受土体渗透性影响大.Abstract: This paper presents a 2.5-D coupled FE-BE model to simulate the three-dimensional dynamic interaction between saturated soils and tunnels with arbitrary sections.The tunnel is modeled using 2.5-D FEM and the ground is modeled using 2.5-D BEM for saturated porous media.The auxiliary problems are introduced to eliminate the Cauchy singularity of the 2.5-D boundary integral equation.The coupled FE-BE equations are obtained using the continuity conditions on the soil-tunnel interface.The presented model is appropriate for tunnels with arbitrary sections and high computational efficiency.The model is verified through the comparison with the existing models.Finally, a case study of dynamic responses of a quasi-rectangular tunnel in saturated soil due to moving loads is presented.The effects of soil permeability on displacements and pore pressure are investigated.The results show that:(1) The pore pressure decreases drastically with the increment of soil permeability, while displacements are not susceptible to soil permeability;(2) the pore pressure and displacements are mainly distributed in the vicinity of 2m around the loading point;(3) In the direction of gravity, the dissipation of the pore pressure beneath the tunnel is faster than that of displacements;the distributions along the depth to tunnel invert of pore pressure and axial displacement are evidently influenced by the soil permeability.
-
Key words:
- saturated soil /
- special-section tunnel /
- dynamic response /
- coupled FE-BE /
- Fourier transformation
-
表 1 隧道参数
Table 1. Parameters of tunnel
表 2 饱和土体参数
Table 2. Parameters of saturated soil
-
[1] Shen SL,Wu HN,Cui YJ, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunnelling and Underground Space Technology, 2014, 40(12):309-323 [2] 黄大维, 周顺华, 宫全美等. 软土地区地铁不同结构间差异沉降特点分析. 同济大学学报(自然科学版), 2013, 41(1):95-100Huang Dawei, Zhou Shunhua, Gong Quanmei, et al. Characteristic analysis of non-uniform settlement for different structures of metro in soft soil districts. Journal of Tongji University (Natural Science), 2013, 41(1):95-100 (in Chinese) [3] 狄宏规, 周顺华, 宫全美等. 软土地区地铁隧道不均匀沉降特征及分区控制. 岩土工程学报, 2015, 37S2):74-79 (Di Honggui, Zhou Shunhua, Gong Quanmei, et al. Differential settlement of metro tunnels and its zonal control in soft deposits. Chinese Journal of Geotechnical Engineering, 2015, 37(S2):74-79 (in Chinese) [4] Di HG, Zhou SH, Xiao JH, et al. Investigation of the long-term settlement of a cut-and-cover metro tunnel in a soft deposit. Engineering Geology, 2016, 204:33-40 doi: 10.1016/j.enggeo.2016.01.016 [5] Mettrikine AV, Vrouwenvelder ACWM. Surface ground vibration due to a moving train in a tunnel:two-dimensional model. Journal of Sound and Vibration, 2000, 234(1):43-66 doi: 10.1006/jsvi.1999.2853 [6] Forrest JA, Hunt HEM. A three-dimensional tunnel model for calculation of train-induced ground vibration. Journal of Sound and Vibration, 2006, 294(4-5):678-705 doi: 10.1016/j.jsv.2005.12.032 [7] Forrest JA, Hunt HEM. Ground vibration generated by trains in underground tunnels. Journal of Sound and Vibration, 2006, 294(4-5):706-736 doi: 10.1016/j.jsv.2005.12.031 [8] Hussein MFM, Hunt HEM. A numerical model for calculating vibration from a railway tunnel embedded in a full-space. Journal of Sound and Vibration, 2007, 305:401-431 doi: 10.1016/j.jsv.2007.03.068 [9] Chua K, Lo KW, Balendra T. Building response due to subway train traffic. Journal of Geotechnical Engineering, 1995, 121(11):747-754 doi: 10.1061/(ASCE)0733-9410(1995)121:11(747) [10] Gardien W, Stuit HG. Modelling of soil vibrations from railway tunnels. Journal of Sound and Vibration, 2003, 267(3):605-619 doi: 10.1016/S0022-460X(03)00727-2 [11] 刘维宁, 夏禾, 郭文军. 地铁列车振动的环境响应. 岩石力学与工程学报, 1996, 15S1):586-593 (Liu Weining, Xia He, Guo Wenjun. Study of vibration effects of underground trains on surrounding environments. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(S1):586-593 (in Chinese) [12] 宫全美, 徐勇, 周顺华. 地铁运行载荷引起的隧道地基土动力响应分析. 中国铁道科学, 2005,26(4):47-51Gong Quanmei, Xu Yong, Zhou Shunhua. Dynamic response analysis of tunnel foundation by vehicle vibration in metro. China Railway Science, 2005, 26(4):47-51(in Chinese) [13] 钱春宇, 郑建国, 宋春雨. 西安钟楼台基受地铁运行振动响应的分析. 世界地震工程, 2010, 26S1):177-181 (Qian Chunyu, Zheng Jianguo, Song Chunyu. Dynamic response analysis of Bell Tower foundation induced by train running on metro in Xi0an. World Earthquake Engineering, 2010, 26 (S1):177-181 (in Chinese) [14] 谢伟平, 孙洪刚. 地铁运行时引起的土的波动分析. 岩石力学与工程学报, 2003, 22(7):1180-1184Xie Weiping, Sun Honggang. FEM analysis on wave propagation in soils induced by high speed train loads, Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7):1180-1184 (in Chinese) [15] Bian XC, Jin WF, Jiang HG. Ground-borne vibrations due to dynamic loading from moving trains in subway tunnels. Journal of Zhejiang University-Science A:Applied Physics and Engineering, 2012, 13(11):870-876 [16] Sheng X, Jones CJC, Thompson DJ. Prediction of ground vibration from trains using the wavenumber finite and boundary element methods. Journal of Sound and Vibration, 2006, 293(3-5):575-586 doi: 10.1016/j.jsv.2005.08.040 [17] Francois S, Schevenels M, Galvín P, et al. A 2.5D coupled FE-BE methodology for the dynamic interaction between longitudinally invariant structures and a layered halfspace. Computer Methods in Applied Mechanics and Engineering, 2010, 199(23-24):1536-1548 doi: 10.1016/j.cma.2010.01.001 [18] Galvín P, Francois S, Schevenels M. A 2.5D coupled FE-BE model for the prediction of railway induced vibrations. Soil Dynamics and Earthquake Engineering, 2010, 30(12):1500-1512 doi: 10.1016/j.soildyn.2010.07.001 [19] Degrande G, Clouteau D, Othman R, et al. A numerical model for ground borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation. Journal of Sound and Vibration, 2006, 193(3):645-666 [20] Gupta S, Hussein MFM, Degrande G. A comparison of two numerical models for the prediction of vibrations from underground railway traffic. Soil Dynamics and Earthquake Engineering, 2007, 27(7):608-624 doi: 10.1016/j.soildyn.2006.12.007 [21] Senjuntichai T, Rajapakse RKND. Transient response of a circular cavity in a poroelastic medium. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(6):357-383 doi: 10.1002/(ISSN)1096-9853 [22] 刘干斌, 谢康和, 施祖元. 黏弹性饱和多孔介质中圆柱孔洞的频域响应. 力学学报, 2004, 36(5):557-563Liu Ganbin, Xie Kanghe, Shi Zuyuan. Frequency response of a cylindrical cavity in poroviscoelastic saturated medium. Acta Mechanica Sinica, 2004, 36(5):557-563 (in Chinese) [23] 黄晓吉, 扶名福, 徐斌. 移动环形载荷作用下饱和土中圆形衬砌隧洞动力响应研究. 岩土力学, 2012, 33(3):892-898Huang Xiaoji,Fu Mingfu, Xu Bin. Dynamic response of a circular lining tunnel in saturated soil due to moving ring load. Rock and Soil Mechanics, 2012, 33(3):892-898 (in Chinese) [24] Hasheminejad SM, Komeili M. Effect of imperfect bonding on axisymmetric elastodynamic response of a lined circular tunnel in poroelastic soil due to a moving ring load. International Journal of Solids and Structures, 2009, 46:398-411 doi: 10.1016/j.ijsolstr.2008.08.040 [25] 曾晨, 孙宏磊, 蔡袁强等. 简谐载荷作用下饱和土体中圆形衬砌隧道三维动力响应分析. 岩土力学, 2014, 35(4):1147-1156Zeng Chen, Sun Honglei, Cai Yuanqiang, et al. Analysis of threedimensional dynamic response of a circular lining tunnel in saturated soil to harmonic loading. Rock and Soil Mechanics, 2014, 35(4):1147-1156 (in Chinese) [26] 曾晨, 孙宏磊, 蔡袁强等. 饱和土体中衬砌隧道在移动载荷下的动力响应. 浙江大学学报 (工学版), 2015, 49(3):511-521Zeng Chen, Sun Honglei, Cai Yuanqiang, et al. Dynamic response oflined tunnel in saturated soil due to moving load. Journal of Zhejiang University (Engineering Science), 2015, 49(3):511-521 (in Chinese) [27] 狄宏规, 周顺华, 陕耀等. 基于改进壳-柱模型的盾构隧道饱和地基动应力解. 同济大学学报(自然科学版), 2016, 44(9):1384-1390Di Honggui, Zhou Shunhua, Shan Yao, et al. Solution for dynamic stress of saturated soil surrounding a shield tunnel based on modified shell-cylinder model. Journal of Tongji University (Natural Science), 2016, 44(9):1384-1390(in Chinese) [28] 邹炎. 地下结构地震反应规律和抗震设计方法研究.[博士论文].北京:中国地震局工程力学研究所, 2015Zou Yan. Study on seismic response laws and seismic design methods of underground structures.[PhD Thesis]. Beijing:Institute of Engineering Mechanics, China Earthquake Administration, 2015(in Chinese) [29] 高广运, 何俊峰, 李佳. 地铁运行引起的饱和土地基动力响应. 浙江大学学报 (工学版), 2010, 44(10):1925-1930Gao Guangyun,He Junfeng, Li Jia. Dynamic response induced by running subway in saturated ground. Journal of Zhejiang University (Engineering Science), 2010, 44(10):1925-1930(in Chinese) [30] 袁宗浩, 蔡袁强, 曾晨. 地铁列车载荷作用下轨道系统及饱和土体动力响应分析. 岩石力学与工程学报, 2015, 34(7):1470-1479Yuan Zonghao, Cai Yuanqiang, Zeng Chen. Dynamic response analysis of track system and underground railway tunnel in saturated soil subjected to a moving train load. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7):1470-1479 (in Chinese) [31] Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid, I, low-frequency range. Journal Acoustic Social America, 1956, 28:168-178 doi: 10.1121/1.1908239 [32] Biot MA. Generalized theory of acoustic propagation in porous dissipative media. Journal Acoustic Social America, 1962, 34(9A):1254-1264 doi: 10.1121/1.1918315 [33] Zimmerman C, Stern M. Boundary element solution of 3-D wave scatter problems in a poroelastic medium. Engineering Analysis with Boundary Elements, 1993, 12(4):223-240 doi: 10.1016/0955-7997(93)90050-U [34] Lu JF, Jeng DS, Williams S. A 2.5-D dynamic model for a saturated porous medium:Part I. Green's function. International Journal of Solids and Structures, 2008, 45(2):378-391 doi: 10.1016/j.ijsolstr.2007.07.025 [35] Zhou SH, He C, Di HG. Dynamic 2.5-D Green's function for a poroelastic half-space. Engineering Analysis with Boundary Elements, 2016, 67:96-107 doi: 10.1016/j.enganabound.2016.03.011 [36] Hasheminejad SM, Hosseini H. Nonaxisymmetric interaction of a spherical radiator in a fluid-filled permeable borehole. International Journal of Solids and Structures, 2008, 45(1):24-47 doi: 10.1016/j.ijsolstr.2007.07.008 -