EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内皮调节对小动脉管腔运动影响的模型分析

唐元梁 贺缨

唐元梁, 贺缨. 内皮调节对小动脉管腔运动影响的模型分析[J]. 力学学报, 2017, 49(1): 182-190. doi: 10.6052/0459-1879-16-171
引用本文: 唐元梁, 贺缨. 内皮调节对小动脉管腔运动影响的模型分析[J]. 力学学报, 2017, 49(1): 182-190. doi: 10.6052/0459-1879-16-171
Tang Yuanliang, He Ying. MODEL ANALYSIS OF ENDOTHELIUM-DEPENDENT VASOMOTION OF SMALL ARTERY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 182-190. doi: 10.6052/0459-1879-16-171
Citation: Tang Yuanliang, He Ying. MODEL ANALYSIS OF ENDOTHELIUM-DEPENDENT VASOMOTION OF SMALL ARTERY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 182-190. doi: 10.6052/0459-1879-16-171

内皮调节对小动脉管腔运动影响的模型分析

doi: 10.6052/0459-1879-16-171
基金项目: 

国家自然科学基金 51576033

和大连市科技计划 2015F11GH092

详细信息
    通讯作者:

    贺缨,教授,主要研究方向:血液动力学,生物传热传质.E-mail:heying@dlut.edu.cn

  • 中图分类号: R318.01

MODEL ANALYSIS OF ENDOTHELIUM-DEPENDENT VASOMOTION OF SMALL ARTERY

  • 摘要: 微循环是血液和组织之间发生物质交换的主要场所,它可以通过改变管径实现对血压、血流量的局部调节.血管内皮层对小动脉运动有重要的调节作用.本文基于连续介质假设,建立了内皮调节过程中主要活性物质在管壁中的扩散——反应动力学模型,并分析了非线性黏弹性血管的径向运动特性.利用该模型首先得到了内皮舒张因子一氧化氮(NO)、平滑肌细胞内钙离子(Ca2+)以及磷酸化肌球蛋白(actin-myosin complexes,AMC)在管壁内的的径向浓度分布;为分析内皮调节的动态过程,进一步对小动脉的被动舒张、血流量发生扰动时的管径响应分别进行了模拟.研究结果显示:当没有活性物质参与调节小动脉被动舒张时,管径无振荡发生;当血流量变化引起内皮调节时,内皮舒张因子NO浓度和管径均出现衰减振荡,振荡周期约60 s.分析认为内皮调节对壁面剪切力的反馈控制,可能是NO浓度和管径产生周期性振荡的原因.内皮调节过程呈现的频谱特征可以为血管内皮功能障碍的诊断提供帮助.

     

  • 图  1  血管内皮调节图示[24]

    Figure  1.  Schematic of endothelial regulation[24]

    图  2  管壁受力状态

    Figure  2.  Stress condition on vessel wall

    图  3  内皮调节主要介质在管壁内的径向浓度分布

    Figure  3.  Stationary concentration distributions in the arterial wall of the key agents

    图  4  管壁的被动扩张变化

    Figure  4.  Passive dilatation of the artery

    图  5  NO浓度和管径随时间的变化

    Figure  5.  Time dependence of the changes of NO concentration and artery radius

    图  6  管径扰动随血流量的变化

    Figure  6.  Changes of artery radius under different flow conditions

    图  7  内皮调节介质浓度随时间的变化($\eta = 0,Q = 1.25Q_0 )$

    Figure  7.  Variations of key agents' concentrations ($\eta = 0,Q = 1.25Q_0 )$

    图  8  内皮调节过程的剪切力反馈控制

    Figure  8.  Feedback control of shear stress in the process of endothelial regulation

    表  1  模型参数

    Table  1.   Model parameters

    表  2  不同血流量条件下管径和壁面剪切力的响应

    Table  2.   Responses of vessel radius and shear stress under different flow conditions

  • [1] Davis MJ, Hill MA, Kuo L. Local Regulation of Microvascular Perfusion. Comprehensive Physiology, 2010
    [2] Bohlen, Glenn H. Microvascular Consequences of Obesity and Diabetes. Comprehensive Physiology, 2010
    [3] Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288(5789):373-376 doi: 10.1038/288373a0
    [4] 任长辉,刘肖,康红艳等. 剪切力条件下血管内皮细胞与平滑肌细胞的相互作用. 医用生物力学, 2015, 30(2):185-191 http://www.cnki.com.cn/Article/CJFDTOTAL-YISX201502020.htm

    Ren Changhui, Liu Xiao, Kang Hongyan, et al. Interactions between vascular endothelial cells and smooth muscle cells under shear stress. Journal of Medical Biomechanics, 2015, 30(2):185-191(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YISX201502020.htm
    [5] Pohl U, De WC, Gloe T. Large arterioles in the control of blood flow:role of endothelium-dependent dilation. Acta Physiologica Scandinavica, 2000, 168(168):505-510 http://cn.bing.com/academic/profile?id=02982278b6d97c5d94c4ecf7c0de8bd1&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Koller A, Kaley G. Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. American Journal of Physiology, 1991, 260(260):862-868 http://cn.bing.com/academic/profile?id=cb0c8418c1410a3dde2423b32bc76367&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Li LF, Cheng X, Qin KR. Modeling of TRPV4-C1-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP. Biomechanics & Modeling in Mechanobiology, 2015, 14(5):1-15 http://cn.bing.com/academic/profile?id=4f3d3ae13860d4ffcb65ffd3f17f215a&encoded=0&v=paper_preview&mkt=zh-cn
    [8] 陈宗正, 覃开蓉, 高争鸣等. 用于分析剪切力和生化因子对细胞联合作用的微流控装置. 水动力学研究与进展, 2015, 30(6):643-649 http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201506008.htm

    Chen Zongzheng, Qin Kairong, Gao Zhengming, et al. A microfluidic device for analyzing cellular behavior in response to shear stress and biochemical factors. Chinese Journal of Hydrodynamics, 2015, 30(6):643-649(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201506008.htm
    [9] 高争鸣, 覃开蓉, 陈宗正等. 剪切力和ATP定量调控血管内皮细胞钙信号的数值仿真研究. 水动力学研究与进展, 2015, 30(6):679-684 http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201506014.htm

    Gao Zhengming, Qin Kairong, Chen Zongzheng, et al. Numerical simulation research on quantitative regulation of intracellular Ca2+ signals in vascular endothelial cells via shear stress and ATP modulation. Chinese Journal of Hydrodynamics, 2015, 30(6):679-684(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201506014.htm
    [10] Liao JC, Kuo L. Interaction between adenosine and flow-induced dilation in coronary microvascular network. AJP Heart & Circulatory Physiology, 1997, 272(4Pt2):H1571-H1581 http://cn.bing.com/academic/profile?id=f438e22e22d392ffa95387b5c83ed4d0&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Cornelissen AJ, Dankelman J, Vanbavel E, et al. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree:a model study. AJP Heart & Circulatory Physiology, 2002, 282(6):H2224 http://cn.bing.com/academic/profile?id=dd19294f0ef72222917fc348cb7f62fc&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Chen X, Buerk DG, Barbee KA, et al. 3D network model of NO transport in tissue. Medical & Biological Engineering & Computing, 2011, 49(6):633-647 http://cn.bing.com/academic/profile?id=c7f0bf5c23b71110bbe61da5ad6077bc&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Liu X, Fan Y, Xu XY, et al. Nitric oxide transport in an axisymmetric stenosis. Journal of the Royal Society Interface, 2012, 9(75):2468-2478 doi: 10.1098/rsif.2012.0224
    [14] Tsoukias NM, Popel AS. A model of nitric oxide capillary exchange. Microcirculation, 2003, 10(6):479-495 doi: 10.1038/sj.mn.7800210
    [15] Carlson BE, Secomb TW. A theoretical model for the myogenic response based on the length-tension characteristics of vascular smooth muscle. Microcirculation, 2005, 12(4):327-338 doi: 10.1080/10739680590934745
    [16] Arciero JC, Carlson BE, Secomb TW. Theoretical model of metabolic blood flow regulation:roles of ATP release by red blood cells and conducted responses. AJP Heart & Circulatory Physiology, 2008, 295(4):H1562-H1571 http://cn.bing.com/academic/profile?id=15b50ad99bc81466944669c7c943765f&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Carlson BE, Arciero JC, Secomb TW. Theoretical model of blood flow autoregulation:roles of myogenic, shear-dependent, and metabolic responses. AJP Heart & Circulatory Physiology, 2008, 295(4):H1572-H1579 http://cn.bing.com/academic/profile?id=1cf0481541c9a97a9048879d2d6317f9&encoded=0&v=paper_preview&mkt=zh-cn
    [18] Yang J, Jr J C. The myogenic response in isolated rat cerebrovascular arteries:smooth muscle cell model. Medical Engineering & Physics, 2013, 25(8):691-709 http://cn.bing.com/academic/profile?id=063670d470c599336e0068fa7dc9b418&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Yang J, Clark JW, Bryan RM, et al. Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell. AJP Heart & Circulatory Physiology, 2005, 289(2):H886-H897 http://cn.bing.com/academic/profile?id=a7a5e0d7e8905508b1bb32647120fe16&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Kudryashov NA, Chernyavskii IL. Numerical simulation of the process of autoregulation of the arterial blood flow. Fluid Dynamics, 2008, 43(1):32-48 doi: 10.1134/S0015462808010055
    [21] Kvernmo HD, Stefanovska A, Bracic M, et al. Spectral analysis of the laser doppler perfusion signal in human skin before and after exercise. Microvascular Research, 1998, 56(3):173-182 doi: 10.1006/mvre.1998.2108
    [22] Sagaidachnyi AA, Usanov DA, Skripal AV. Correlation of skin temperature and blood flow oscillations//Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8337(4):83370A-83370A-8
    [23] Elena S, Sergey P, Irina M, et al. Assessment of endothelial dysfunction in patients with impaired glucose tolerance during a cold pressor test. Diabetes & Vascular Disease Research Official Journal of the International Society of Diabetes & Vascular Disease, 2013, 10(6):489-497 http://cn.bing.com/academic/profile?id=0c983e01ec1a4ea68418eff005a0e37a&encoded=0&v=paper_preview&mkt=zh-cn
    [24] Hall JE. Textbook of Medical Physiology. 13th Edn. Oxford:Elsevier Ltd, 2016. 203-214
    [25] Formaggia L, Lamponi D, Quarteroni A. One-dimensional models for blood flow in arteries. Journal of Engineering Mathematics, 2003, 47(3-4):251-276 http://cn.bing.com/academic/profile?id=14b9305d1969740ed5a6e3101502bf91&encoded=0&v=paper_preview&mkt=zh-cn
    [26] Regirer SA, Nkh S. Mathematical models of nitric oxide transport in a blood vessel. Biofizika, 2005, 50(3):515-536 http://cn.bing.com/academic/profile?id=69adadc069c92591e8b9e3faf88e7f46&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Snow HM, Mcauliffe SJ, Moors JA, et al. The relationship between blood flow and diameter in the iliac artery of the anaesthetized dog:the role of endothelium-derived relaxing factor and shear stress. Experimental Physiology, 1993, 16(3):278-282 http://cn.bing.com/academic/profile?id=7e925a4b28966f5e0466d414ac53f89b&encoded=0&v=paper_preview&mkt=zh-cn
    [28] Nilsson H, Aalkjaer C. Vasomotion:mechanisms and physiological importance. Molecular Interventions, 2003, 3(2):79-89, 51 doi: 10.1124/mi.3.2.79
    [29] Goligorsky MS, Colflesh D, Gordienko D, et al. Branching points of renal resistance arteries are enriched in L-type calcium channels and initiate vasoconstriction. American Journal of Physiology, 1995, 268(2 Pt 2):F251
    [30] Secomb TW. Theoretical models for regulation of blood flow. Microcirculation, 2008, 15(8):765-775 doi: 10.1080/10739680802350112
    [31] Kvernmo HD, Stefanovska A, Kirkeboen KA, et al. Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators. Microvascular Research, 1999, 57:298-309 doi: 10.1006/mvre.1998.2139
    [32] Wei YJ, He Y, Tang YL. Finite element analysis on NO transport in system of permeable capillary and tissue//11th Asian Computational Fluid Dynamics Conference. Accepted
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  691
  • HTML全文浏览量:  69
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-13
  • 修回日期:  2016-09-29
  • 网络出版日期:  2016-10-18
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回