A COMPARATIVE STUDY OF TWO TURBULENCE MODELS FOR MAGNUS EFFECT IN SPINNING PROJECTILE
-
摘要: 弹箭设计、弹道计算和稳定性研究都需要准确预测旋转弹箭的马格努斯力和力矩,国内针对旋转弹箭气动特性的数值模拟工作集中在旋成体上,对带翼外形进行完全时间相关的非定常研究鲜有见到;国外虽然有对带翼外形开展研究,但以验证方法为主,对湍流模型在复杂外形弹箭旋转中的研究未曾见到.采用完全时间相关的非定常N-S方程,对带翼弹箭开展计算,对比了一方程SA(Spalart-Allmaras)湍流模型和两方程k-!SST(shear-stress-transport)湍流模型对马格努斯效应产生的影响,并分析了旋转导致的边界层和涡非对称畸变,以及周向压力分布和剪切应力分布非对称畸变.结果表明:旋转引起的物面流场参数变化主要体现在弹体中后部,SA和SST湍流模型预测的全弹马格努斯特性与阿诺德工程发展中心(Arnold Engineering Development Center,AEDC)实验及陆军研究实验室(Army Research Laboratory,ARL)的计算结果一致性很好,对动导数而言两湍流模型计算精度相当.两湍流模型计算的弹体左侧流场参数差异比右侧大,分析认为正向旋转使左侧壁面速度方向与来流速度相反,相互阻碍使气流脉动效应更强.壁面附近湍流黏性系数SA结果大于SST结果,y=0截面物面压力SA结果小于SST结果、最大相差6%,摩阻系数SA结果大于SST结果、最大相差35%.SA对旋转产生的分离抑制作用强于SST.Abstract: Magnus force and moment must be predicted precisely during calculating trajectories and designing rotating projectiles.Domestic studies have focused on adult spin projectile, and foreign studies have not compared turbulence model utility in spinning wind-body combination either.This paper simulated the flow field around a spinning wind-body combination by solving unsteady compressible three dimensional Navier-Stokes equations with dual time step method.At the same time the discrepancy between Splalrt-Allmaras (SA) and k-!shear stress transport (SST) turbulence models are studied.For both turbulence models, dynamic coefficients have a good agreement with the Arnold Engineering Development Center (AEDC) experimental data and Army Research Laboratory (ARL) computational data.Flow field parameters such as velocity gradient, pressure magnitude, show significant change in the latter half profile due to spin.Distortion of boundary layer in middle and rear part is conspicuous.Asymmetric distortion of circumferential surface pressure and shear stress is the fundamental reasons for the Magnus effect.Flow field parameters on the left side of body show larger variance between SA and SST turbulence models than the right side, indicating that speed pulse and pressure fluctuation are stronger on the left.The turbulent viscosity coefficient near the wall computed by SA is larger than SST.According to the slice of y=0 m, surface pressure shows SA is smaller than SST, reaching a maximum difference of 6%, and shear stress of SA is larger than SST, up to a maximum difference of 35%.The inhibition strength for flow separation indicates that SA is stronger than SST.
-
Key words:
- turbulence model /
- wing-body combination /
- spinning projectile /
- Magnus effect /
- numerical simulation
-
表 1 计算条件
Table 1. Calculation condition
-
[1] 臧国才, 李树常. 弹箭空气动力学. 北京:兵器工业出版社, 1984:260-262Zang Guocai, Li Shuchang. Aerodynamics of Projectiles and Missiles. Beijing:The Publishing House of Ordnance Industry, 1984:260-262(in Chinese) [2] 苗瑞生, 吴甲生. 旋转空气动力学. 力学进展, 1987, 17(4):479-488 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198704004.htmMiao Ruisheng, Wu Jiasheng. Aerodynamics of spinning projectiles. Advances in Mechanics, 1987, 17(4):479-488(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198704004.htm [3] Walter BS, Harry AD, Lyle DK, et al. Computations of magnus effects for a yawed spinning body of revolution. AIAA Journal, 1978, 16(7):687-692 doi: 10.2514/3.7566 [4] Sturek WB, Schiff LB. Computations of the magnus effect for slender bodies in supersonic flow. AIAA-80-1586, 1980 [5] Nietubicz CJ, Sturek WB, Heavey KR. Computations of projectile magnus effect at transonic velocities. AIAA Journal, 1985, 23(7):998-1004 doi: 10.2514/3.9030 [6] Pechier M, Guillen P, Cayzac R. A combined theoretical-experimental investigation of magnus effects. AIAA-98-2797, 1998 [7] DeSpirito J. CFD prediction of Magnus effect in subsonic to supersonic flight. AIAA-2008-427, 2008 [8] Vishal AB. Numerical prediction of roll damping and Magnus dynamic derivatives for finned projectiles at angle of attack. AIAA-2012-2905, 2012 [9] 吴甲生, 雷娟棉. 制导兵器气动布局与气动特性. 北京:国防工业出版, 2008:79-80Wu Jiasheng, Lei Juanmian. Aerodynamic Configuration and Characteristics of Guided Weapons. Beijing:National Defense Industry Press, 2008:79-80(in Chinese) [10] 王智杰, 陈伟芳, 李浩. 旋转弹丸空气动力特性数值解法. 国防科技大学学报, 2003, 25(4):15-19 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200304004.htmWang Zhijie, Chen Weifang, Li Hao. Numerical solution ofthe aerodynamic projectiles of the rotating projectiles. Journalof National University of Defense Technology, 2003, 25(4):15-19(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200304004.htm [11] 高旭东, 武晓松, 王晓鸣. 高速旋转侧喷流场数值分析. 弹道学报, 2005, 17(2):8-12 http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200502001.htmGao Xudong, Wu Xiaosong, Wang Xiaoming. A numerical study on high-speed spinning and lateral jet flow field. Journal of Ballistics, 2005, 17(2):8-12(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200502001.htm [12] 宋琦, 杨树兴, 徐勇等. 滚转状态下卷弧翼火箭弹气动特性的数值模拟. 固体火箭技术, 2008, 31(6):552-560 http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ200806004.htmSong Qi, Yang Shuxing, Xu Yong, et al. Numerical simulation on aerodynamic characteristicsof rolling rocketwith wraparound fins. Journal of Solid Rocket Technology, 2008, 31(6):552-560(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ200806004.htm [13] 郁伟, 张小兵. 旋转弹丸在复杂激波影响下气动特性数值模拟与分析. 南京理工大学学报, 2012, 36(4):624-628 http://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201204013.htmYu Wei, Zhang Xiaobing. Numerical simulation and analysis of aerodynamic characteristics of spinning projectile while flying over complex shock flow fields. Journal of Nanjing University of Science and Technology, 2012, 36(4):624-628(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201204013.htm [14] 邓帆, 陈少松, 陶钢. 带栅格翼导弹超声速阶段滚转阻尼导数的数值研究. 空气动力学学报, 2012, 30(2):151-156 http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201202002.htmDeng Fan, Chen Shaosong, Tao Gang. CFD analysis of roll damping derivatives for missile with grid fins at supersonic speeds. Acta Aerodynamica Sinica, 2012, 30(2):151-156(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201202002.htm [15] 陈东阳, Laith KA, 芮筱亭. 旋转弹箭气动导数与气动热仿真计算. 计算机仿真, 2014, 31(5):26-30 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201405008.htmChen Dongyang,Laith KA,Rui Xaoting. Aerodynamic derivative and aerodynamic heatingsimulation and computation of spinning vehicle. Computer Emulation, 2014, 31(5):26-30(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201405008.htm [16] 闫超. 计算流体力学方法及应用. 北京:北京航空航天大学出版社, 2006:19-25Yan Chao. Theory and Application of Computational Fluid Dynamics. Beijing:BUAA Press, 2006:19-25(in Chinese) [17] Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamics flows. AIAA-92-0439, 1992 [18] Menter FR. Two equation eddy viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32:598-1605 [19] Roe PL. Approximate riemann solvers, parameter vector and difference scheme. Journal of Computational Physics, 1981, 43:357-372 doi: 10.1016/0021-9991(81)90128-5 [20] Venkatafrishnan V, Jameson A. Computation of unsteady transonic flows by the solution of euler equations. AIAA Journal, 1988, 26(8):974-981 doi: 10.2514/3.9999 [21] Eleuterio FT. Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin:Springer-Verlag, 1999:341-350 [22] 杨云军. 飞行器非稳定运动的流动物理与动力学机制. 北京:中国航天空气动力技术研究院, 2009:35-42Yang Yunjun. Flow Physics and Dynamic Mechanism on Unsteady Motions of the Vehicles. Beijing:China Academy of Aerospace Aerodynamics, 2009:35-42(in Chinese) [23] Jameson A. Time dependent calculations using multigrid with application to unsteady flows past airfoil and wings. AIAA-91-1596, 1991 [24] Evelyn O, Peter E. Parameter investigation with line-implicit lower-upper symmetric gauss-seidel on 3D stretched grids. AIAA-2014-2094, 2014 [25] Leroy MJ. Experimental roll-damping, magnus, and static stability characteristics of two slender missile configurations at high angles of attack (0° to 90°) and Mach number 0.2 through 2.5. AEDC-TR-76-58, 1976 [26] Li Z, Chen HX, Zhang YF, et al. Grid-convergence studyof two-dimensionaleuler solutions. Journal of Aircraft, 2016, 53(1):294-298 doi: 10.2514/1.C033396 -