EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种湍流模型在高速旋转翼身组合弹箭中的对比研究

石磊 杨云军 周伟江

石磊, 杨云军, 周伟江. 两种湍流模型在高速旋转翼身组合弹箭中的对比研究[J]. 力学学报, 2017, 49(1): 84-92. doi: 10.6052/0459-1879-16-151
引用本文: 石磊, 杨云军, 周伟江. 两种湍流模型在高速旋转翼身组合弹箭中的对比研究[J]. 力学学报, 2017, 49(1): 84-92. doi: 10.6052/0459-1879-16-151
Shi Lei, Yang Yunjun, Zhou Weijiang. A COMPARATIVE STUDY OF TWO TURBULENCE MODELS FOR MAGNUS EFFECT IN SPINNING PROJECTILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 84-92. doi: 10.6052/0459-1879-16-151
Citation: Shi Lei, Yang Yunjun, Zhou Weijiang. A COMPARATIVE STUDY OF TWO TURBULENCE MODELS FOR MAGNUS EFFECT IN SPINNING PROJECTILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 84-92. doi: 10.6052/0459-1879-16-151

两种湍流模型在高速旋转翼身组合弹箭中的对比研究

doi: 10.6052/0459-1879-16-151
基金项目: 

国家自然科学基金资助项目 11372040,11472258

详细信息
    通讯作者:

    石磊,工程师,主要研究方向:计算流体力学应用及飞行器气动特性计算.E-mail:shilei8842@163.com

  • 中图分类号: V211.3

A COMPARATIVE STUDY OF TWO TURBULENCE MODELS FOR MAGNUS EFFECT IN SPINNING PROJECTILE

  • 摘要: 弹箭设计、弹道计算和稳定性研究都需要准确预测旋转弹箭的马格努斯力和力矩,国内针对旋转弹箭气动特性的数值模拟工作集中在旋成体上,对带翼外形进行完全时间相关的非定常研究鲜有见到;国外虽然有对带翼外形开展研究,但以验证方法为主,对湍流模型在复杂外形弹箭旋转中的研究未曾见到.采用完全时间相关的非定常N-S方程,对带翼弹箭开展计算,对比了一方程SA(Spalart-Allmaras)湍流模型和两方程k-!SST(shear-stress-transport)湍流模型对马格努斯效应产生的影响,并分析了旋转导致的边界层和涡非对称畸变,以及周向压力分布和剪切应力分布非对称畸变.结果表明:旋转引起的物面流场参数变化主要体现在弹体中后部,SA和SST湍流模型预测的全弹马格努斯特性与阿诺德工程发展中心(Arnold Engineering Development Center,AEDC)实验及陆军研究实验室(Army Research Laboratory,ARL)的计算结果一致性很好,对动导数而言两湍流模型计算精度相当.两湍流模型计算的弹体左侧流场参数差异比右侧大,分析认为正向旋转使左侧壁面速度方向与来流速度相反,相互阻碍使气流脉动效应更强.壁面附近湍流黏性系数SA结果大于SST结果,y=0截面物面压力SA结果小于SST结果、最大相差6%,摩阻系数SA结果大于SST结果、最大相差35%.SA对旋转产生的分离抑制作用强于SST.

     

  • 图  1  AFF外形图

    Figure  1.  AFF model dimensions

    图  2  计算坐标系及角度定义

    Figure  2.  Coordinate system and angle definition

    图  3  不同网格侧向力系数对比规律($T$表示周期,$t$为时间)

    Figure  3.  Side force coefficient for different grids

    图  4  动态气动特性随攻角变化规律

    Figure  4.  Dynamic coefficients as a function of angle of attack

    图  5  湍流黏性系数云图($\alpha =20^\circ$,$t=T/8 $)

    Figure  5.  Turbulent viscosity coefficient contour (SST on the left,SA on the right,$\alpha =20^\circ$,$t=T/8 $)

    图  6  $x/D =8$,$y =0$截面的速度型分布($\alpha =20^\circ$,$t= T/8 $)

    Figure  6.  Velocity Profile at $x/D =8$,$y =0$ ($\alpha =20^\circ$,$t= T/8 $)

    图  7  $x/D =8$,$y =0$截面的压力分布($\alpha =20^\circ$,$t=T/8 $)

    Figure  7.  Pressure distribution at $x/D=8$,$y=0$ ($\alpha =20^\circ$,$t=T/8 $)

    图  8  $x/D=9.5$截面的空间马赫、压力云图及流线分布($\alpha =20^\circ$,$t=T/8 $)

    Figure  8.  Mach,pressure contour and streamline distribution near the cross section $x/D=9.5$ ($\alpha =20^\circ$,$t=T/8 $)

    图  9  不同周向角对应弹身表面摩阻系数沿轴向分布 \($\alpha =20^\circ$,$t= T/8 $)

    Figure  9.  Axis surface friction coefficient distribution versus different circumferential angle ($\alpha =20^\circ$,$t= T/8 $)

    图  10  不同周向角对应弹身表面压力沿轴向分布 ($\alpha =20^\circ$,$t=T/8 $)

    Figure  10.  Axis surface pressure distribution versus different circumferential angle ($\alpha =20^\circ$,$t=T/8 $)

    表  1  计算条件

    Table  1.   Calculation condition

  • [1] 臧国才, 李树常. 弹箭空气动力学. 北京:兵器工业出版社, 1984:260-262

    Zang Guocai, Li Shuchang. Aerodynamics of Projectiles and Missiles. Beijing:The Publishing House of Ordnance Industry, 1984:260-262(in Chinese)
    [2] 苗瑞生, 吴甲生. 旋转空气动力学. 力学进展, 1987, 17(4):479-488 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198704004.htm

    Miao Ruisheng, Wu Jiasheng. Aerodynamics of spinning projectiles. Advances in Mechanics, 1987, 17(4):479-488(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198704004.htm
    [3] Walter BS, Harry AD, Lyle DK, et al. Computations of magnus effects for a yawed spinning body of revolution. AIAA Journal, 1978, 16(7):687-692 doi: 10.2514/3.7566
    [4] Sturek WB, Schiff LB. Computations of the magnus effect for slender bodies in supersonic flow. AIAA-80-1586, 1980
    [5] Nietubicz CJ, Sturek WB, Heavey KR. Computations of projectile magnus effect at transonic velocities. AIAA Journal, 1985, 23(7):998-1004 doi: 10.2514/3.9030
    [6] Pechier M, Guillen P, Cayzac R. A combined theoretical-experimental investigation of magnus effects. AIAA-98-2797, 1998
    [7] DeSpirito J. CFD prediction of Magnus effect in subsonic to supersonic flight. AIAA-2008-427, 2008
    [8] Vishal AB. Numerical prediction of roll damping and Magnus dynamic derivatives for finned projectiles at angle of attack. AIAA-2012-2905, 2012
    [9] 吴甲生, 雷娟棉. 制导兵器气动布局与气动特性. 北京:国防工业出版, 2008:79-80

    Wu Jiasheng, Lei Juanmian. Aerodynamic Configuration and Characteristics of Guided Weapons. Beijing:National Defense Industry Press, 2008:79-80(in Chinese)
    [10] 王智杰, 陈伟芳, 李浩. 旋转弹丸空气动力特性数值解法. 国防科技大学学报, 2003, 25(4):15-19 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200304004.htm

    Wang Zhijie, Chen Weifang, Li Hao. Numerical solution ofthe aerodynamic projectiles of the rotating projectiles. Journalof National University of Defense Technology, 2003, 25(4):15-19(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200304004.htm
    [11] 高旭东, 武晓松, 王晓鸣. 高速旋转侧喷流场数值分析. 弹道学报, 2005, 17(2):8-12 http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200502001.htm

    Gao Xudong, Wu Xiaosong, Wang Xiaoming. A numerical study on high-speed spinning and lateral jet flow field. Journal of Ballistics, 2005, 17(2):8-12(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200502001.htm
    [12] 宋琦, 杨树兴, 徐勇等. 滚转状态下卷弧翼火箭弹气动特性的数值模拟. 固体火箭技术, 2008, 31(6):552-560 http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ200806004.htm

    Song Qi, Yang Shuxing, Xu Yong, et al. Numerical simulation on aerodynamic characteristicsof rolling rocketwith wraparound fins. Journal of Solid Rocket Technology, 2008, 31(6):552-560(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ200806004.htm
    [13] 郁伟, 张小兵. 旋转弹丸在复杂激波影响下气动特性数值模拟与分析. 南京理工大学学报, 2012, 36(4):624-628 http://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201204013.htm

    Yu Wei, Zhang Xiaobing. Numerical simulation and analysis of aerodynamic characteristics of spinning projectile while flying over complex shock flow fields. Journal of Nanjing University of Science and Technology, 2012, 36(4):624-628(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201204013.htm
    [14] 邓帆, 陈少松, 陶钢. 带栅格翼导弹超声速阶段滚转阻尼导数的数值研究. 空气动力学学报, 2012, 30(2):151-156 http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201202002.htm

    Deng Fan, Chen Shaosong, Tao Gang. CFD analysis of roll damping derivatives for missile with grid fins at supersonic speeds. Acta Aerodynamica Sinica, 2012, 30(2):151-156(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201202002.htm
    [15] 陈东阳, Laith KA, 芮筱亭. 旋转弹箭气动导数与气动热仿真计算. 计算机仿真, 2014, 31(5):26-30 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201405008.htm

    Chen Dongyang,Laith KA,Rui Xaoting. Aerodynamic derivative and aerodynamic heatingsimulation and computation of spinning vehicle. Computer Emulation, 2014, 31(5):26-30(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201405008.htm
    [16] 闫超. 计算流体力学方法及应用. 北京:北京航空航天大学出版社, 2006:19-25

    Yan Chao. Theory and Application of Computational Fluid Dynamics. Beijing:BUAA Press, 2006:19-25(in Chinese)
    [17] Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamics flows. AIAA-92-0439, 1992
    [18] Menter FR. Two equation eddy viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32:598-1605
    [19] Roe PL. Approximate riemann solvers, parameter vector and difference scheme. Journal of Computational Physics, 1981, 43:357-372 doi: 10.1016/0021-9991(81)90128-5
    [20] Venkatafrishnan V, Jameson A. Computation of unsteady transonic flows by the solution of euler equations. AIAA Journal, 1988, 26(8):974-981 doi: 10.2514/3.9999
    [21] Eleuterio FT. Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin:Springer-Verlag, 1999:341-350
    [22] 杨云军. 飞行器非稳定运动的流动物理与动力学机制. 北京:中国航天空气动力技术研究院, 2009:35-42

    Yang Yunjun. Flow Physics and Dynamic Mechanism on Unsteady Motions of the Vehicles. Beijing:China Academy of Aerospace Aerodynamics, 2009:35-42(in Chinese)
    [23] Jameson A. Time dependent calculations using multigrid with application to unsteady flows past airfoil and wings. AIAA-91-1596, 1991
    [24] Evelyn O, Peter E. Parameter investigation with line-implicit lower-upper symmetric gauss-seidel on 3D stretched grids. AIAA-2014-2094, 2014
    [25] Leroy MJ. Experimental roll-damping, magnus, and static stability characteristics of two slender missile configurations at high angles of attack (0° to 90°) and Mach number 0.2 through 2.5. AEDC-TR-76-58, 1976
    [26] Li Z, Chen HX, Zhang YF, et al. Grid-convergence studyof two-dimensionaleuler solutions. Journal of Aircraft, 2016, 53(1):294-298 doi: 10.2514/1.C033396
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  848
  • HTML全文浏览量:  39
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-01
  • 修回日期:  2016-11-03
  • 网络出版日期:  2016-11-04
  • 刊出日期:  2017-01-18

目录

    /

    返回文章
    返回