EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆球诱发斜爆轰波的数值研究

方宜申 胡宗民 滕宏辉 姜宗林

方宜申, 胡宗民, 滕宏辉, 姜宗林. 圆球诱发斜爆轰波的数值研究[J]. 力学学报, 2017, 49(2): 268-273. doi: 10.6052/0459-1879-16-143
引用本文: 方宜申, 胡宗民, 滕宏辉, 姜宗林. 圆球诱发斜爆轰波的数值研究[J]. 力学学报, 2017, 49(2): 268-273. doi: 10.6052/0459-1879-16-143
Fang Yishen, Hu Zongmin, Teng Honghui, Jiang Zonglin. NUMERICAL STUDY OF THE OBLIQUE DETONATION INITIATION INDUCED BY SPHERES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273. doi: 10.6052/0459-1879-16-143
Citation: Fang Yishen, Hu Zongmin, Teng Honghui, Jiang Zonglin. NUMERICAL STUDY OF THE OBLIQUE DETONATION INITIATION INDUCED BY SPHERES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273. doi: 10.6052/0459-1879-16-143

圆球诱发斜爆轰波的数值研究

doi: 10.6052/0459-1879-16-143
基金项目: 

国家自然科学基金资助项目 11372333

国家自然科学基金资助项目 91641130

国家自然科学基金资助项目 11532014

详细信息
    通讯作者:

    2) 滕宏辉, 副研究员, 主要研究方向:激波与爆轰物理, 爆轰燃烧推进, 多相燃烧与爆炸.E-mail:hhteng@imech.ac.cn

  • 中图分类号: O381

NUMERICAL STUDY OF THE OBLIQUE DETONATION INITIATION INDUCED BY SPHERES

  • 摘要: 斜爆轰发动机是飞行器在高马赫数飞行条件下的一种新型发动机,具有结构简单、成本低和比冲高等优点.但是斜爆轰发动机的来流马赫数范围广,来流条件复杂,为实现斜爆轰波的迅速、可靠引发,采用钝头体来诱发.利用Euler方程和氢氧基元反应模型,对超声速氢气/空气混合气体中圆球诱导的斜爆轰流场进行了数值研究.不同于楔面诱发的斜爆轰波,球体首先会在驻点附近诱发正激波/爆轰波,然后在稀疏波作用下发展为斜激波/爆轰波.模拟结果显示,经过钝头体压缩的预混气体达到自燃温度后,会出现两种流场:当马赫数较低时,由于稀疏波的影响,燃烧熄灭,钝头体下游不会出现燃烧情况;而当马赫数较高时,燃烧阵面能传到下游.分析表明,当钝头体的尺度较小时,驻点附近的能量不足以诱发爆轰波,只会形成明显的燃烧带与激波非耦合结构;当钝头体的尺度较大时,流场中不会出现燃烧带与激波的非耦合现象,且这一特征与马赫数无关.通过调整球体直径,获得了激波和燃烧带部分耦合的燃烧流场结构,这一流场结构在楔面诱发的斜爆轰波中并不存在,说明稀疏波与爆轰波面的相互作用是决定圆球诱发斜爆轰波的关键.

     

  • 图  1  Ma=4.0,D=5 mm,加密层数3(左),4(右) 网格分布

    Figure  1.  Ma=4.0, D=5 mm, encryption layer 3 (left) and 4 (right) griddistribution

    图  2  Ma=4.0,D=5 mm,y=0时的压力和温度变化

    Figure  2.  Ma=4.0, D=5 mm, the pressure and temperature at line y=0 variationdiagram

    图  3  Ma=4.0, D=5 mm,压力 (上)、温度 (下) 分布图

    Figure  3.  Ma=4.0, D=5 mm, pressure (upper) and temperature (lower) distribution

    图  4  Ma=5.0, D=5 mm,压力 (上)、温度 (下) 分布图

    Figure  4.  Ma=5.0, D=5 mm, pressure (upper) and temperature (lower) distribution

    图  5  最高温度随马赫数的变化

    Figure  5.  Maximum temperature with different Mach numbers

    图  6  D=15 mm,压力 (上)、温度 (下) 分布图

    Figure  6.  D=15 mm, pressure (upper) and temperature (lower) distribution

    图  7  马赫数和圆球直径对起爆的影响

    Figure  7.  The influence of Mach number and ball diameter on initiation

    图  8  Ma=4.2,D=6.5 mm,压力 (上)、温度 (下) 分布图

    Figure  8.  Ma=4.2, D=6.5 mm, pressure (upper) and temperature (lower) distribution

  • [1] 董刚, 范宝春, 谢波.氢气——空气混合物中瞬态爆轰过程的二维数组模拟.高压物理学报, 2004, 18(1):40-46 http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200401008.htm

    Dong Gang, Fan Baochun, Xie bo. Two-dimensional simulation of transient detonation process for H2-O2-N2 mixture. Chinese Journal of High Pressure Physics, 2004, 18(1):40-46(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200401008.htm
    [2] Lin W, Zhou J, Liu S, et al. Experimental study on propagation mode of H2/air continuously rotating detonation wave. International Journal of Hydrogen Energy, 2015, 40(4):1980-1993 doi: 10.1016/j.ijhydene.2014.11.119
    [3] Voland RT, Huebner LD, McClinton CR. X-43A hypersonic vehicle technology development. Acta Astronautica, 2006, 59(1-5):181-191 doi: 10.1016/j.actaastro.2006.02.021
    [4] 林志勇, 周进, 张继业等.预混超声速气流斜激波诱发脱体爆轰研究.航空动力学报, 2009, 24(1):50-54 http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200901008.htm

    Lin Zhiyong, Zhou Jin, Zhang Jiye, et al. Investigation of detached detonation induced by oblique shock in premixed supersonic flow. Journal of Aerospace Power, 2009, 24(1):50-54(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200901008.htm
    [5] Rudy W, Dziubanii K, Zbikowski M, et al. Experimental determination of critical conditions for hydrogen-air detonation propagation in partially confined geometry. International Journal of Hydrogen Energy, 2016, 1-8 https://www.researchgate.net/publication/301761861_Experimental_determination_of_critical_conditions_for_hydrogen-air_detonation_propagation_in_partially_confined_geometry
    [6] Wang C, Dong XZ, Shu CW. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. Journal of Computational Physics, 2015, 298:161-175 doi: 10.1016/j.jcp.2015.06.001
    [7] Zhang Z, Li Z, Dong G. Numerical studies of multi-cycle acetyleneair detonation induced by shock focusing. Procedia Engineering, 2015, 99:327-331 doi: 10.1016/j.proeng.2014.12.542
    [8] 王成, 宁建国, 雷娟. 障碍物对氢氧预混气体爆轰波传播的影响//庆祝中国力学学会成立50周年暨中国力学学会学术大会, 北京, 2007

    Wang Cheng, Ning Jianguo, Lei Juan. The influence of obstacles on the propagation of H2-air detonation//Celebration of the 50 Anniversary of the Founding of the Chinese Society of Mechanics and the Academic Conference of Chinese Society of Mechanics, Beijing, 2007(in Chinese)
    [9] Wang C, Dong XZ, Shu CW. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. Journal of Computational Physics, 2015, 298:161-175 doi: 10.1016/j.jcp.2015.06.001
    [10] Li C, Kailasanath K, Oran ES. Detonation structures behind oblique shocks. Phys Fluids, 1994, 6:1600-1611 doi: 10.1063/1.868273
    [11] Viguier C, Silva LFFD, Desbordes D, et al. Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen-air mixtures. Proc Combust Inst, 1997, 26:3023-3031 https://www.researchgate.net/publication/222467871_Onset_of_oblique_detonation_waves_Comparison_between_experimental_and_numerical_results_for_hydrogen-air_mixtures
    [12] Choi JY, Kim DW, Jeung IS, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc Combust Inst, 2007, 31:2473-2480 doi: 10.1016/j.proci.2006.07.173
    [13] Teng HH, Jiang ZL, Ng HD. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 2014, 744:111-128 doi: 10.1017/jfm.2014.78
    [14] Teng HH, Ng HD, Li K, et al. Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame, 2015, 162(2):470-477 doi: 10.1016/j.combustflame.2014.07.021
    [15] Teng HH, Jiang ZL. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 2012, 713:659-669 doi: 10.1017/jfm.2012.478
    [16] Zhang Y, Gong J, Wang T. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios. Aerospace Science and Technology, 2016, 49:130-134 doi: 10.1016/j.ast.2015.11.035
    [17] Wang T, Zhang YN, Teng HH, et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture, Physics of Fluids, 2015, 27(9):096101 doi: 10.1063/1.4930986
    [18] Lehr HF. Experiments on shock-Induced combustion. Astronautica Acta, 1972, 17:589-597
    [19] Kaneshige MJ, Shepherd JE. Oblique detonation stabilized on a hypervelocity projectile//26th Symp. (Int.) on Combustion, Pittsburgh, 1996. 3015
    [20] Ju Y, Masuya G, Sasoh A. Numerical and theoretical studies on detonation initiation by a supersonic projectile. Symposium on Combustion, 1998, 27(2):2225-2231 doi: 10.1016/S0082-0784(98)80071-4
    [21] Maeda, S, Inada, R, Kasahara, J, et al. Visualization of the nonsteady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc Combust Inst, 2011, 33:2343-2349 doi: 10.1016/j.proci.2010.06.066
    [22] Maeda S, Kasahara J, Matsuo A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combustion and Flame, 2012, 159(2):887-896 doi: 10.1016/j.combustflame.2011.09.001
    [23] Maeda S, Sumiya S, Kasahara J, et al. Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles. Proceedings of the Combustion Institute, 2013, 34(2):1973-1980 doi: 10.1016/j.proci.2012.05.035
    [24] Maeda S, Sumiya S, Kasahara J, et al. Scale effect of spherical projectiles for stabilization of oblique detonation waves. Shock Waves, 2015, 25(2):141-150 doi: 10.1007/s00193-015-0549-4
    [25] Choi JY, Maeda S, Kasahara J, et al. Calculation of drag coefficients for hypersonic spherical projectiles initiating oblique detonation wave or shock-induced combustion//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012
    [26] Liu Y, Han X, Yao S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. Shock Waves, 2016:1-11 https://www.researchgate.net/publication/296692612_A_numerical_investigation_of_the_prompt_oblique_detonation_wave_sustained_by_a_finite-length_wedge
    [27] Sun M, Takayama K. Conservative smoothing on an adaptive quadrilateral grid. Journal of Computational Physics, 1999, 150:143-180 doi: 10.1006/jcph.1998.6167
    [28] Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. (Second ed). Berlin:Springer, 1999
    [29] Kee RJ, Rupley FM, Meeks E, et al. Chemkin-Ⅲ:a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. UC-405, SAND96-8216, Sandia National Laboratories, 1996
    [30] Brown PN, Byrne GD, Hindmarsh AC. VODE:a variable-coefficient ODE solver. SIAM J Sci Stat Comput, 1989, 10(5):1038-1051 doi: 10.1137/0910062
  • 加载中
图(8)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  151
  • PDF下载量:  759
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-25
  • 网络出版日期:  2016-12-09
  • 刊出日期:  2017-03-18

目录

    /

    返回文章
    返回