[1] |
董刚, 范宝春, 谢波.氢气——空气混合物中瞬态爆轰过程的二维数组模拟.高压物理学报, 2004, 18(1):40-46 http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200401008.htmDong Gang, Fan Baochun, Xie bo. Two-dimensional simulation of transient detonation process for H2-O2-N2 mixture. Chinese Journal of High Pressure Physics, 2004, 18(1):40-46(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200401008.htm
|
[2] |
Lin W, Zhou J, Liu S, et al. Experimental study on propagation mode of H2/air continuously rotating detonation wave. International Journal of Hydrogen Energy, 2015, 40(4):1980-1993 doi: 10.1016/j.ijhydene.2014.11.119
|
[3] |
Voland RT, Huebner LD, McClinton CR. X-43A hypersonic vehicle technology development. Acta Astronautica, 2006, 59(1-5):181-191 doi: 10.1016/j.actaastro.2006.02.021
|
[4] |
林志勇, 周进, 张继业等.预混超声速气流斜激波诱发脱体爆轰研究.航空动力学报, 2009, 24(1):50-54 http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200901008.htmLin Zhiyong, Zhou Jin, Zhang Jiye, et al. Investigation of detached detonation induced by oblique shock in premixed supersonic flow. Journal of Aerospace Power, 2009, 24(1):50-54(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200901008.htm
|
[5] |
Rudy W, Dziubanii K, Zbikowski M, et al. Experimental determination of critical conditions for hydrogen-air detonation propagation in partially confined geometry. International Journal of Hydrogen Energy, 2016, 1-8 https://www.researchgate.net/publication/301761861_Experimental_determination_of_critical_conditions_for_hydrogen-air_detonation_propagation_in_partially_confined_geometry
|
[6] |
Wang C, Dong XZ, Shu CW. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. Journal of Computational Physics, 2015, 298:161-175 doi: 10.1016/j.jcp.2015.06.001
|
[7] |
Zhang Z, Li Z, Dong G. Numerical studies of multi-cycle acetyleneair detonation induced by shock focusing. Procedia Engineering, 2015, 99:327-331 doi: 10.1016/j.proeng.2014.12.542
|
[8] |
王成, 宁建国, 雷娟. 障碍物对氢氧预混气体爆轰波传播的影响//庆祝中国力学学会成立50周年暨中国力学学会学术大会, 北京, 2007Wang Cheng, Ning Jianguo, Lei Juan. The influence of obstacles on the propagation of H2-air detonation//Celebration of the 50 Anniversary of the Founding of the Chinese Society of Mechanics and the Academic Conference of Chinese Society of Mechanics, Beijing, 2007(in Chinese)
|
[9] |
Wang C, Dong XZ, Shu CW. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. Journal of Computational Physics, 2015, 298:161-175 doi: 10.1016/j.jcp.2015.06.001
|
[10] |
Li C, Kailasanath K, Oran ES. Detonation structures behind oblique shocks. Phys Fluids, 1994, 6:1600-1611 doi: 10.1063/1.868273
|
[11] |
Viguier C, Silva LFFD, Desbordes D, et al. Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen-air mixtures. Proc Combust Inst, 1997, 26:3023-3031 https://www.researchgate.net/publication/222467871_Onset_of_oblique_detonation_waves_Comparison_between_experimental_and_numerical_results_for_hydrogen-air_mixtures
|
[12] |
Choi JY, Kim DW, Jeung IS, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc Combust Inst, 2007, 31:2473-2480 doi: 10.1016/j.proci.2006.07.173
|
[13] |
Teng HH, Jiang ZL, Ng HD. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 2014, 744:111-128 doi: 10.1017/jfm.2014.78
|
[14] |
Teng HH, Ng HD, Li K, et al. Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame, 2015, 162(2):470-477 doi: 10.1016/j.combustflame.2014.07.021
|
[15] |
Teng HH, Jiang ZL. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 2012, 713:659-669 doi: 10.1017/jfm.2012.478
|
[16] |
Zhang Y, Gong J, Wang T. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios. Aerospace Science and Technology, 2016, 49:130-134 doi: 10.1016/j.ast.2015.11.035
|
[17] |
Wang T, Zhang YN, Teng HH, et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture, Physics of Fluids, 2015, 27(9):096101 doi: 10.1063/1.4930986
|
[18] |
Lehr HF. Experiments on shock-Induced combustion. Astronautica Acta, 1972, 17:589-597
|
[19] |
Kaneshige MJ, Shepherd JE. Oblique detonation stabilized on a hypervelocity projectile//26th Symp. (Int.) on Combustion, Pittsburgh, 1996. 3015
|
[20] |
Ju Y, Masuya G, Sasoh A. Numerical and theoretical studies on detonation initiation by a supersonic projectile. Symposium on Combustion, 1998, 27(2):2225-2231 doi: 10.1016/S0082-0784(98)80071-4
|
[21] |
Maeda, S, Inada, R, Kasahara, J, et al. Visualization of the nonsteady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc Combust Inst, 2011, 33:2343-2349 doi: 10.1016/j.proci.2010.06.066
|
[22] |
Maeda S, Kasahara J, Matsuo A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combustion and Flame, 2012, 159(2):887-896 doi: 10.1016/j.combustflame.2011.09.001
|
[23] |
Maeda S, Sumiya S, Kasahara J, et al. Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles. Proceedings of the Combustion Institute, 2013, 34(2):1973-1980 doi: 10.1016/j.proci.2012.05.035
|
[24] |
Maeda S, Sumiya S, Kasahara J, et al. Scale effect of spherical projectiles for stabilization of oblique detonation waves. Shock Waves, 2015, 25(2):141-150 doi: 10.1007/s00193-015-0549-4
|
[25] |
Choi JY, Maeda S, Kasahara J, et al. Calculation of drag coefficients for hypersonic spherical projectiles initiating oblique detonation wave or shock-induced combustion//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012
|
[26] |
Liu Y, Han X, Yao S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. Shock Waves, 2016:1-11 https://www.researchgate.net/publication/296692612_A_numerical_investigation_of_the_prompt_oblique_detonation_wave_sustained_by_a_finite-length_wedge
|
[27] |
Sun M, Takayama K. Conservative smoothing on an adaptive quadrilateral grid. Journal of Computational Physics, 1999, 150:143-180 doi: 10.1006/jcph.1998.6167
|
[28] |
Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. (Second ed). Berlin:Springer, 1999
|
[29] |
Kee RJ, Rupley FM, Meeks E, et al. Chemkin-Ⅲ:a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. UC-405, SAND96-8216, Sandia National Laboratories, 1996
|
[30] |
Brown PN, Byrne GD, Hindmarsh AC. VODE:a variable-coefficient ODE solver. SIAM J Sci Stat Comput, 1989, 10(5):1038-1051 doi: 10.1137/0910062
|