EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摆动河槽水动力稳定性特征分析

白玉川 冀自青 徐海珏

白玉川, 冀自青, 徐海珏. 摆动河槽水动力稳定性特征分析[J]. 力学学报, 2017, 49(2): 274-288. doi: 10.6052/0459-1879-16-105
引用本文: 白玉川, 冀自青, 徐海珏. 摆动河槽水动力稳定性特征分析[J]. 力学学报, 2017, 49(2): 274-288. doi: 10.6052/0459-1879-16-105
Bai Yuchuan, Ji Ziqing, Xu Haijue. HYDRODYNAMIC INSTABILITY CHARACTERISTICS OF LAMINAR FLOW IN A MEANDERING CHANNEL WITH MOVING BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 274-288. doi: 10.6052/0459-1879-16-105
Citation: Bai Yuchuan, Ji Ziqing, Xu Haijue. HYDRODYNAMIC INSTABILITY CHARACTERISTICS OF LAMINAR FLOW IN A MEANDERING CHANNEL WITH MOVING BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 274-288. doi: 10.6052/0459-1879-16-105

摆动河槽水动力稳定性特征分析

doi: 10.6052/0459-1879-16-105
基金项目: 

国家自然科学基金项目 41576093

国家自然科学基金项目 51279124

国家自然科学基金项目 51321065

天津大学水利工程仿真与安全国家重点实验室基金 HESS-1606

详细信息
    通讯作者:

    2) 徐海珏, 副教授, 主要研究方向:流体力学、河流海岸动力学、泥沙运动力学.E-mail:xiaoxiaoxu_2004@163.com

  • 中图分类号: O352

HYDRODYNAMIC INSTABILITY CHARACTERISTICS OF LAMINAR FLOW IN A MEANDERING CHANNEL WITH MOVING BOUNDARY

  • 摘要: 河流形态与水动力结构息息相关,形态约束水动力结构,水动力结构则通过泥沙运动进一步塑造形态,在自然界河流中形成一对辩证互馈关系.天然河流形态形式多样,大致可以分为顺直、微弯、分叉和散乱游荡几种类型,其中微弯及多个弯曲构成的河型为河流动力演化中最重要的一环.多个弯曲构成的河型可用正弦派生曲线来描述,它也是天然河流主槽与水动力结构复杂相互作用的结果.作为探讨这一过程的力学作用机理,构建摆动槽道并研究槽道摆动与其内部流动结构的互馈关系,既是流体力学研究的热点内容,也是目前河流动力过程研究的基础内容.在此重点讨论这一互馈关系前一部分,即水流对摆动边界的响应.文中建立了随体坐标系下摆动河槽与内部水流动力响应理论模型,通过给定摆动弯曲槽道的不同特征参数,研究讨论了正弦派生型摆动边界下的槽道水流动力稳定性特征,明确了弯曲槽道摆动对其内部主流及扰动水流结构的影响,确定弯曲槽道摆动波数、摆动频率对扰动流发展影响的相应参数定量关系,得到了槽道弯曲度和摆动特征对其内部水流不同尺度扰动影响的阈值选择性范围.

     

  • 图  1  正弦派生曲线边界平面示意图

    Figure  1.  Sketch of sine-generated boundary

    图  2  一阶流速沿n方向分布 (复数空间)

    Figure  2.  Distribution of first-order velocities along n direction (complexspace)

    图  3  一阶流速沿n方向分布 (幅值-相位空间)

    Figure  3.  Distribution of first-order velocities along n direction (amplitude-phase space)

    图  4  一阶流速沿n方向分布 (复数空间)

    Figure  4.  Distributions of first-order velocities along n direction (complexspace)

    图  5  一阶流速横向分布 (幅值-相位空间)

    Figure  5.  Distributions of first-order velocities (amplitude-phase space)

    图  6  顺直河道中性曲线计算结果验证

    Figure  6.  Comparison of numerical results with data of straight channel

    图  7  扰动频率$\omega_{Tr}$及扰动增长率$\omega_{Ti}$随摆动波数$\alpha_{\rm c}$的变化

    (平面状态参数:$\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$; 拟序扰动参数:$\alpha _{T }=1.02$, $ Re=5 772.222$)

    Figure  7.  Variation of disturbance frequency $\omega_{Tr}$ and growth rate $\omega_{Ti}$ with swinging wavenumber $\alpha_{\rm c}$

    (for: $\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$; $\alpha_{T }=1.02$, $ Re=5 772.222$)

    图  8  临界雷诺数随摆动波数$\alpha_{\rm c}$的变化 (平面状态参数: $\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$)

    Figure  8.  Variation of critical Reynolds number with swinging wave number $\alpha_{\rm c}$(for: $\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$)

    图  9  中性曲线随摆动波数$\alpha_{\rm c}$的变化 (平面状态参数:$\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$, $0 \leq \alpha_{\rm c}\leq 0.5$)

    Figure  9.  Variation of neutral curve with swinging wave number $\alpha_{\rm c}$ (for: $\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$, $0 \leq \alpha_{\rm c}\leq 0.5$)

    图  10  临界扰动点随摆动波数$\alpha_{\rm c}$的变化

    (平面状态参数:$\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$)

    Figure  10.  Variation of critical point with swinging wave number $\alpha_{\rm c}$

    (for: $\theta_{\rm m}=0.1$, $\omega_{\rm c}=0$)

    图  11  扰动频率$\omega_{Tr}$和扰动增长率$\omega_{Ti}$随摆动频率$\omega_{\rm c}$的变化

    (平面状态参数:$\theta_{\rm m}=0.1$, $-0.1 \leq \omega_{\rm c} \leq 0.1$; 拟序扰动参数:$\alpha_{T}=1.016$, $ Re=2 307$)

    Figure  11.  Variation of disturbance frequency $\omega_{Tr}$ and growth rate $\omega _{Ti}$ with swinging frequency $\omega_{\rm c}$

    (for: $\theta_{\rm m}=0.1$, $-0.1 \leq \omega_{\rm c} \leq 0.1$; $\alpha _{T }=1.016$, $ Re=2 307$)

    图  12  临界雷诺数$Re_{\rm cr}$随摆动频率$\omega_{\rm c}$的变化 (平面状态参数:$\theta_{\rm m}=0.1$, $\alpha_{\rm c}=0.3$)

    Figure  12.  Variation of critical Reynolds number $Re_{\rm cr}$ with swinging frequency $\omega_{\rm c}$ (for: $\theta_{\rm m}=0.1$, $\alpha_{\rm c}=0.3$)

    图  13  中性曲线随摆动频率$\omega_{\rm c}$的变化 (平面状态参数:$\theta_{\rm m}=0.1$, $\alpha _{\rm c}=0.3$, $-0.02 \leq \omega_{\rm c}\leq 0.02$)

    Figure  13.  Variation of neutral curve with swinging frequency $\omega_{\rm c}$ (for:$\theta_{\rm m}=0.1$, $\alpha_{\rm c}=0.3$, $-0.02 \leq \omega_{\rm c}\leq 0.02$)

  • [1] Davies C, Carpenter PW. Instabilities in a plane channel flow be-tween compliant walls. Journal of Fluid Mechanics, 1997, 352:205-243 doi: 10.1017/S0022112097007313
    [2] Davies C, Carpenter PW. Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. Journal of Fluid Mechanics, 1997, 335:361-392 doi: 10.1017/S0022112096004636
    [3] Hell M, Waters SL. Transverse flows in rapidly oscillating elastic cylindrical shells. Journal of Fluid Mechanics, 2006, 547:185-214 doi: 10.1017/S0022112005007214
    [4] Guaus A, Airiau C, Bottaro A, et al. Effects of wall compliance on the linear stability of Taylor-Couette flow. Journal of Fluid Mechanics, 2009, 630:331-365 doi: 10.1017/S0022112009006648
    [5] Pitman MW, Lucey AD. Stability of plane-Poiseuille flow interacting with a finite compliant panel. 17th Australasian Fluid Mechanics Conference, Auckland, 2010-12-5-9. New Zealand, 2010
    [6] Hall P. The stability of the Poiseuille flow modulated at high frequencies//Proceedings of the Royal Society of London, London, 1975. England, 1975. 453-464
    [7] Thomas C, Bassom AP, Blennerhassett PJ, et al. The linear stability of oscillatory Poiseuille flow in channels and pipes//Proceedings of the Royal Society A, 2011. Australia, 2011. 467:2643-2662
    [8] Kuhlmann C, Wanschura M, Rath HJ. Flow in two-sided lid-driven cavities:non-uniqueness, instabilities, and cellular structures. Journal of Fluid Mechanics, 1997, 336:267-299 doi: 10.1017/S0022112096004727
    [9] Ren L, Chen JG, Zhu KQ. Dual role of wall slip on linear stability of plane Poiseuille flow. Chinese Physics Letters, 2008, 25(2):601-603 doi: 10.1088/0256-307X/25/2/067
    [10] Sen PK, Carpenter PW, Hegde S, et al. A wave driver theory for vortical waves propagating across junctions with application to those between rigid and compliant walls. Journal of Fluid Mechanics, 2009, 625:1-46 doi: 10.1017/S0022112008005545
    [11] Friedkin JF. A laboratory study of the meandering of alluvial rivers. U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 1945. USA
    [12] Brice JC. Platform properties of meandering processes, In:River Meandering//Elliott CM. ed. Proceedings of the conference Rivers, Louisiana, 1983-10-24-26. New Orleans:ASCE, 1984. 1-15
    [13] Hooke JM, Redmond CE. Use of cartographic sources for analyzing river channel change with examples from Britain//Petts GE, ed. Historical of Large Alluvial Rivers:Western Europe, Wiley, 1989
    [14] Parker G, Sawai K, Ikeda S. Bend theory of river meanders. Part 2. Nonlinear deformation of finite-amplitude bends. Journal of Fluid Mechanics, 1982, 115:303-314 doi: 10.1017/S0022112082000767
    [15] Ikeda S, Parker G, Sawai K. Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics, 1981, 112:363-377 doi: 10.1017/S0022112081000451
    [16] Bai YC, Xu HJ. A study on the stability of laminar open-channel flow over a sandy rippled bed. Science in China, Series E:Engineering & Material Science, 2005, 35:53-73 http://mall.cnki.net/magazine/Article/JEXG200501007.htm
    [17] Xu HJ, Bai YH. Theoretical analyses on hydrodynamic instability in narrow deep river with variable curvature. Applied Mathematics and Mechanics, 2015, 36(9):1147-1168 doi: 10.1007/s10483-015-1971-6
    [18] Bai YC, Ji ZQ, Xu HJ. Instability and self-adaption character of turbulence coherent structure in narrow-deep river bend. Science China:Technology Science, 2012, 55:2990-2999 doi: 10.1007/s11431-012-4977-4
    [19] Hooke JM. Magnitude and distribution of rates of river bank erosion. Earth Surface Processes and Landforms, 1980, 5:143-157 doi: 10.1002/(ISSN)1931-8065
    [20] Hickin, E J. Lateral migration rates of rivers bends//Cheremisinoff PN, Chereminisoff NP, Cheng SL eds. Handbook of Civil Engineering. Lancaster, Pennsylvinia:Technomic Publishing, 1988
    [21] Pyle CJ, Richards KS, Chandler JH. Digital photogrammetric monitoring of river bank erosion. Photogrammetric Record, 1997, 15(89):753-764 doi: 10.1111/phor.1997.15.issue-89
    [22] Luo JS, Wu XS. On the linear instability of a finite stokes layer:Instantaneous versus Floquet modes. Physics of Fluids, 2010, 22:054106-1-054106-13 doi: 10.1063/1.3422004
    [23] Herbert T. Secondary of boundary layers. Annual Review of Fluid Mechanics, 1988, 20:487-526 doi: 10.1146/annurev.fl.20.010188.002415
    [24] Zhang ZS, Lilley GM. A theoretical model of coherent structure in a plate turbulent boundary layer//Turbulent Shear Flow Ⅲ. Berlin:Springer-Verlag, 1981
    [25] 张兆顺.湍流.北京:国防工业出版社, 2002

    Zhang Zhaoshun. Turbulence. Beijing:National Defence Industry Press, 2002(in Chinese)
    [26] Orszag SA. Accurate solution of the Orr-Sommerfeld stability equation. Journal Fluid Mechanics, 1971, 50(4):689-703 doi: 10.1017/S0022112071002842
    [27] Reynolds WC, Potter MC. Finite-amplitude instability of parallel shear flows. Journal of Fluid Mechanics, 1967, 27:465-492 doi: 10.1017/S0022112067000485
    [28] Nishioka M, Ichikawa Y. An experimental investigation of the stability of plane Poiseuille flow. Journal of Fluid Mechanics, 1975, 72:731-751 doi: 10.1017/S0022112075003254
    [29] Crosato A. Analysis and Modelling of River Meandering.[PhD Thesis]. Italia:University of Padua, 2008
    [30] Seminara G, Zolezzi G, Tubino M, et al. Downstream and upstream influence in river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics, 2001, 438:213-230 https://www.researchgate.net/publication/231859426_Downstream_and_upstream_influence_in_river_meandering_Part_2_Planimetric_development
  • 加载中
图(13)
计量
  • 文章访问数:  1071
  • HTML全文浏览量:  139
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 网络出版日期:  2017-01-05
  • 刊出日期:  2017-03-18

目录

    /

    返回文章
    返回