ANALYSIS OF CHEST INJURY IN FRONTAL IMPACT VIA FINITE ELEMENT MODELLING BASED ON BIOMECHANICAL EXPERIMENT
-
摘要: 安全带的逐步使用极大地提高了车内乘员的安全性,但最近的交通事故研究表明,在正面碰撞工况下,乘员胸部损伤的防护效率还需要进一步提升.利用已验证生物逼真度的人体有限元模型和PMHS(post mortem human subjects)实验结果,建立配有安全带的乘员有限元分析模型,研究在不同碰撞工况下安全带定位设计参数对胸部变形量和肋骨应力应变响应等损伤相关物理参数的影响,并提出在安全设计中为改进防护效率,有效减少胸部损伤风险的一种虚拟试验方法.参考PMHS实验,基于全球人体有限元模型建立了一个基准佩带有限元人体模型,结合实验中测试的运动学响应、安全带的拉伸力和胸部变形量指标验证其生物逼真度.通过参数分析研究正面碰撞中安全带高度位置、安全带角度和碰撞速度对乘员胸部损伤的影响.结果表明胸廓应力应变分布及胸部变形量对安全带的高度位置更加敏感,基于安全带设计参数变化预测的胸部变形量宏观指标和应力应变的微观指标的变化趋势一致.对乘员安全带相关的胸部损伤研究提供虚拟设计分析方法,相关胸部损伤机理的研究结果可为今后约束系统的优化设计提供参考.Abstract: The usage of the seatbelt as a part of the vehicle protection system has immensely promoted occupant safety.However, recent accident investigation shows that it is necessary to increase the chest injury protective efficiency in frontal impact condition.This study aims to investigate the influence of seatbelt system design variables on occupant chest injury related physical parameters at varying impact conditions, especially concerning with the chest deflection and distribution of rib stress/strain.The study is conducted by using human body FE model in combination with post mortem human subjects tests.An FE model of the belted occupant is therefore established by using a baseline human body FE model (GHBMC), which is validated according to detailed experimental data regarding kinematics, seatbelt force and chest deflection.A parameter study is implemented in terms of seatbelt position, seatbelt angle and impact speed to determine the influence of seatbelt utilization on occupant thoracic injury in frontal impact.The results show that the influence of seatbelt position on chest deflection and distribution of rib stress/strain is greater than that of the seatbelt angle.Meanwhile, the trends of chest deflections are the same with the trends of the rib stress/strain responses while the changes of seatbelt design variables.This study provides a virtual test method on investigation of the chest injury biomechanics related to the seatbelt design variables.Furthermore, the results from this study of chest injury mechanism will also provide a reference for optimizing of the occupant restraint system.
-
Key words:
- seatbelt /
- chest deflection /
- human body FE model /
- frontal impact /
- distribution of stress/strain
-
表 1 胸部骨骼和主要器官材料的基本参数
Table 1. Material parameters of the bones and main organs in the chest
表 2 基于3 个研究参数的胸部损伤实验设计矩阵
Table 2. Chest injury DOE simulation matrix based on three study parameters
表 3 随安全带变化的胸腔应力应变极值情况(40 km/h, @115 ms)
Table 3. The peak value of ribcage strain and stress with the change of seatbelt parameters (40 km/h, @ 115 ms)
-
[1] Kahane CJ. Lives Saved by Vehicle Safety Technologies and Associated Federal Motor Vehicle Safety Standards, 1960 to 2012——Passenger Cars and LTVs——With reviews of 26 FMVSS and the effectiveness of their associated safety technologies in reducing fatalities, injuries, and crashes (No. DOT HS 812069), 2015 [2] Abbas AK, Hefny AF, Abu-Zidan FM. Seatbelts and road traffic collision injuries. World Journal of Emergency Surgery, 2011, 6(1):18 doi: 10.1186/1749-7922-6-18 [3] Nirula R, Pintar FA. Identification of vehicle components associated with severe thoracic injury in motor vehicle crashes:a CIREN and NASS analysis. Accident Analysis and Prevention, 2008, 40(1):137-41 doi: 10.1016/j.aap.2007.04.013 [4] Kent RW, Henary B, Matsuoka F. On the fatal crash experience of older drivers//Annual Proceedings/Association for the Advancement of Automotive Medicine (AAAM), 2005 http://cn.bing.com/academic/profile?id=d8f00262d999e84198963659e925ce02&encoded=0&v=paper_preview&mkt=zh-cn [5] Kent RW, Lee SH, Darvish KK, et al. Structural and material changes in the aging thorax and their role in crash protection for older occupants. Stapp Car Crash Journal, 2005, 49:231-249 http://paper.medlive.cn/literature/1954656 [6] Kent R, Patrie J. Chest deflection tolerance to blunt anterior loading is sensitive to age but not load distribution. Forensic Science International, 2005, 149(s2-3):121-128 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.387.1457 [7] Kimpara H, Iwamoto M, Watanabe I, et al. Effect of assumed stiffness and mass density on the impact response of the human chest using a three-dimensional fe model of the human body. Journal of Biomechanical Engineering, 2006, 128(5):772-776 doi: 10.1115/1.2264394 [8] Subit D, Kindig MW, Li Z, et al. Prediction of rib cage fracture in computational modeling:effect of rib cortical thickness distribution and intercostal muscles mechanical properties//International Workshop on Human Subjects for Biomechanical Research, 39, National Highway Traffic Safety Administration, US DOT, 2011 [9] Mizuno K, Itakura T, Hirabayashi S, et al. Optimization of vehicle deceleration to reduce occupant injury risks in frontal impact. Traffic Injury Prevention, 2014, 15(1):48-55 doi: 10.1080/15389588.2013.792408 [10] Bostrom O, Haland Y, Bostrom O, et al. Benefits of a 3+2-point belt system and an inboard torso side support in frontal, far-side and rollover crashes. International Journal of Vehicle Safety, 2005, 1(1/2/3):181-199 doi: 10.1504/IJVS.2005.007546 [11] Kemper AR, Kennedy EA, McNally C, et al. Reducing chest injuries in automobile collisions:rib fracture timing and implications for thoracic injury criteria. Ann Biomed Eng, 2011, 39:2141-2151 doi: 10.1007/s10439-011-0311-8 [12] Murakami D, Kobayashi S, Torigaki T, et al. Finite element analysis of hard and soft tissue contributions to thoracic response:sensitivity analysis of fluctuations in boundary conditions. Stapp Car Crash Journal, 2006, 50:169-189 http://cn.bing.com/academic/profile?id=0b9359fe0ebc256fe74371b9f43be7be&encoded=0&v=paper_preview&mkt=zh-cn [13] Shaw CG, Parent DP, Purtsezov S, et al. Impact response of restrained pmhs in frontal sled tests:skeletal deformation patterns under shoulder seatbelt loading. Stapp Car Crash Journal, 2009, 53:1-48 https://www.researchgate.net/publication/40896437_Impact_response_of_restrained_PMHS_in_frontal_sled_tests_Skeletal_deformation_patterns_under_seat_belt_loading [14] Crandall JR, Bose D, Forman J, et al. Human surrogates for injury biomechanics research. Clinical Anatomy, 2011, 24:362-371 doi: 10.1002/ca.21152 [15] Poulard, D, Subit D, Donlon JP, et al. The contribution of pre-impact spine posture on human body model response in whole-body side impact. Stapp Car Crash Journal, 2014, 58:385-342 https://www.researchgate.net/publication/280242399_The_Contribution_of_Pre-impact_Spine_Posture_on_Human_Body_Model_Response_in_Whole-body_Side_Impact?_sg=rBUY-UayCDtaoOfJXUv2V70hZsiqnF20KAFoFNGOOJj_teZ0-gg39q1A8e3ICj29u_S6rJvKkK4WgWMK17Gmzw [16] Poulard D, Subit D, Donlon JP, et al. Development of a computational framework to adjust the pre-impact spine posture of a whole-body model based on cadaver tests data. Journal of Biomechanics, 2015, 48(4):636-643 doi: 10.1016/j.jbiomech.2014.12.050 [17] 王方, 杨济匡, 李桂兵. 多种冲击载荷条件下的人体肋骨骨折有限元分析. 力学学报, 2014, 46(2):300-307 http://lxxb.cstam.org.cn/CN/abstract/abstract144492.shtmlWang Fang, Yang Jikuang, Li Guibing. Finite element analysis of human rib fracture under various impacts loading conditions. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):300-307(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract144492.shtml [18] 王方, 杨济匡, 李桂兵等. 汽车侧面和斜碰撞中人体胸部损伤响应数值分析. 力学学报, 2016, 48(1):225-234 http://lxxb.cstam.org.cn/CN/abstract/abstract145574.shtmlWang Fang, Yang Jikuang, Li Guibing, et al. Numerical analysis of human thoracic injury responses in vehicle lateral and oblique crashes. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):225-234(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145574.shtml [19] 胡远志,梁永福,蒋成约等. 人体有限元模型THUMS用于正面碰撞乘员损伤研究. 汽车安全与节能学报, 2015, 6(4):379-383 http://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201504011.htmHu Yuanzhi, Liang Yongfu, Jiang Chengyue, et al. Application of the occupant injury investigation in frontal crash based on THUMS model. Journal of Automotive Safety and Engergy, 2015, 6(4):379-383(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201504011.htm [20] Schneider LW, Robbins DH, Pflug MA, et al. Anthropometry of motor vehicle occupants 3- specifications and drawings. Report HS-806717; UMTRI-83-53-2, UMTRI, 1983 [21] Crandall JR, Lessley DJ, Shaw CG, et al. Displacement response of the spine in restrained pmhs during frontal impacts. JSAE International Journal of Automotive Engineering, 2014, 5(2):59-64 http://cn.bing.com/academic/profile?id=ca0fb64d89b121b14710e6b4c6232721&encoded=0&v=paper_preview&mkt=zh-cn [22] Ash JH, Shaw CG, Lessley DJ, et al. PMHS restraint and support surface forces in simulated frontal crashes. JSAE International Journal of Automotive Engineering, 2013, 4(2):41-46 http://cn.bing.com/academic/profile?id=d4c19efd7c56bde2ef373f216abf069c&encoded=0&v=paper_preview&mkt=zh-cn [23] Donlon JP, Poulard D, Lessley D, et al. Understanding how pre-impact posture can affect injury outcome in side impact sled tests using a new tool for visualization of cadaver kinematics. Journal of Biomechanics, 2015, 48(3):529-533 doi: 10.1016/j.jbiomech.2014.12.042 [24] Gayzik FS, Moreno DP, Vavalle NA, et al. Development of the global human body models consortium mid-sized male full body model//International Workshop on Human Subjects for Biomechanical Research, 39, National Highway Traffic Safety Administration, US DOT, 2011 [25] Park G, Kim T, Panzer MB, et al. Validation of shoulder response of human body finite-element model (GHBMC) under whole body lateral impact condition. Annals of Biomedical Engineering, 2016, 1-19 [26] Park G, Kim T, Crandall JR, et al. Comparison of kinematics of GHBMC to PMHS on the side impact condition//2013 IRCOBI Conference. Gothenburg, 2013 [27] Li Z, Kindig MW, Kerrigan JR, et al. Rib fractures under anterior-posterior dynamic loads:experimental and finite element study. Journal of Biomechanics, 2010, 43:228-234 doi: 10.1016/j.jbiomech.2009.08.040 [28] Li Z, Kindig MW, Subit D, et al. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Medical Engineering & Physics, 2010, 32:998-1008 http://d.scholar.cnki.net/detail/SJPD0711_U/SJPD12102101282020 [29] Choi YC, Lee I. Thorax FE model for older population. Japanese Society of Mechanical Engineers (JSME), Fukuoka, Japan, 2009 [30] Andermahr J, Jubel A, Elsner A, et al. Anatomy of the clavicle and the intermedullary nailing of mid-clavicular fractures. Clinical Anatomy, 2007, 20:48-56 doi: 10.1002/(ISSN)1098-2353 [31] Duprey S, Subit D, Guillemot H, et al. Biomechanical properties of the costovertebral joint. Medical Engineering and Physics, 2010, 32:222-227 doi: 10.1016/j.medengphy.2009.12.001 [32] Ito O, Dokko Y, Ohashi K. Development of adult and elderly FE thorax skeletal models//SAE International 2009-01-0381, 2009 [33] Iwamoto M, Kisanuki Y, Watanabe I, et al. Development of a finite element model of the total human body model for safety (THUMS) and application to injury reconstruction//Proceedings of Impact Research Council on the Biomechanics of Impact (IRCOBI), Munich, Germany, 2002, 31-42 [34] Zhao J, Narwani G. Development of a human body finite element model for restraint system R&D applications. The 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV) Washington D.C. Paper No. 05-0399, 2005 https://www.researchgate.net/publication/242606736_DEVELOPMENT_OF_A_HUMAN_BODY_FINITE_ELEMENT_MODEL_FOR_RESTRAINT_SYSTEM_RD_APPLICATIONS [35] Forman JL, Del Pozo de Dios E, Kent RW. A pseudo-elastic effective material property representation of the costal cartilage for use in finite element models of the whole human body. Traffic Injury Prevention, 2010, 11(6):613-622 doi: 10.1080/15389588.2010.517254 [36] Astier V, Thollon L, Arnoux PJ, et al. Development of a finite element model of the shoulder:application during a side impact. International Journal of Crashworthiness, 2008, 13(3):301-312 doi: 10.1080/13588260801933741 [37] Deng YC, Kong W, Ho H. Development of a finite element human thorax model for impact injury studies//SAE International Congress and Exposition, SAE 1999-01-0715, 1999 [38] Yuen KF. The development of numerical human body model for the analysis of automotive side impact lung trauma.[Master Thesis]. University of Waterloo, Canada, 2009 https://www.researchgate.net/publication/255522745_Development_of_a_Human_Body_Model_for_the_Analysis_of_Side_Impact_Automotive_Thoracic_Trauma [39] Kemper AR, McNally C, Pullins CA, et al. The biomechanics of human ribs:material and structural properties from dynamic tension and bending tests. Stapp Car Crash Journal, 2007, 51:235-273 http://d.scholar.cnki.net/detail/SJPD2059_U/SJPD12102203773266 [40] Motozawa Y, Okamoto M, Mori F. Comparison of whole body kinematics between fracture and non-fracture finite element human body models during side impact//IRCOBI Conference Proceedings, IRC-15-70, 2015 [41] Xiao S, Yang JK, Forman JL, et al. A study on influence of seatbelt with and without force limiter to outcome of human body chest model in frontal impact test//ICMTMA Conference Proceedings, 2016 [42] Plank GR, Kleinberger M, Eppinger RH. Analytical investigation of driver thoracic response to out of position airbag deployment. Stapp Car Crash J, 1998, 42:317-329 https://www.researchgate.net/publication/286740450_Analytical_Investigation_of_Driver_Thoracic_Response_to_Out_of_Position_Airbag_Deployment [43] Mordaka J, Meijer R, Rooij LV, et al. Validation of a finite element human model for prediction of rib fractures//Proceedings of SAE World Congress & Exhibition Detroit, US:SAE, 2007, Paper 200701-1161 -