EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相空间中非保守系统的Herglotz广义变分原理及其Noether定理

张毅

张毅. 相空间中非保守系统的Herglotz广义变分原理及其Noether定理[J]. 力学学报, 2016, 48(6): 1382-1389. doi: 10.6052/0459-1879-16-086
引用本文: 张毅. 相空间中非保守系统的Herglotz广义变分原理及其Noether定理[J]. 力学学报, 2016, 48(6): 1382-1389. doi: 10.6052/0459-1879-16-086
Zhang Yi. GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ TYPE FOR NONCONSERVATIVE SYSTEM IN PHASE SPACE AND NOETHER'S THEOREM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1382-1389. doi: 10.6052/0459-1879-16-086
Citation: Zhang Yi. GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ TYPE FOR NONCONSERVATIVE SYSTEM IN PHASE SPACE AND NOETHER'S THEOREM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1382-1389. doi: 10.6052/0459-1879-16-086

相空间中非保守系统的Herglotz广义变分原理及其Noether定理

doi: 10.6052/0459-1879-16-086
基金项目: 国家自然科学基金资助项目(11272227,11572212).
详细信息
    通讯作者:

    张毅,教授,主要研究方向:分析力学.E-mail:zhy@mail.usts.edu.cn

  • 中图分类号: O316

GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ TYPE FOR NONCONSERVATIVE SYSTEM IN PHASE SPACE AND NOETHER'S THEOREM

  • 摘要: 与经典变分原理相比,基于由微分方程定义的作用量的Herglotz广义变分原理给出了非保守动力学系统的一个变分描述,它不仅能够描述所有采用经典变分原理能够描述的动力学过程,而且能够应用于经典变分原理不能适用的非保守或耗散系统.将Herglotz广义变分原理拓展到相空间,研究相空间中非保守力学系统的Herglotz广义变分原理与Noether定理及其逆定理.首先,提出相空间中Herglotz广义变分原理,给出相空间中非保守系统的变分描述,导出相应的Hamilton正则方程;其次,基于非等时变分与等时变分之间的关系,导出相空间中Hamilton-Herglotz作用量变分的两个基本公式;再次,给出Noether对称变换的定义和判据,提出并证明相空间中非保守系统基于Herglotz变分问题的Noether定理及其逆定理,揭示了相空间中力学系统的Noether对称性与守恒量之间的内在联系.在经典条件下,Herglotz广义变分原理退化为经典变分原理,与之相应的相空间中的Noether定理退化为经典Hamilton系统的Noether定理.文末以著名的Emden方程和平方阻尼振子为例说明上述方法和结果的有效性.

     

  • 1 Noether AE. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, KI Ⅱ:235-257  
    2 李子平. 经典和量子约束系统及其对称性质. 北京:北京工业大学出版社, 1993(Li Ziping. Classical and Quantal Dynamics of Constrained Systems and their Symmetrical Properties. Beijing:Beijing Polytechnic University Press, 1993(in Chinese))
    3 Djuki? Dj S, Vujanovi? B. Noether's theory in classical nonconservative mechanics. Acta Mechanica, 1975, 23(1-2):17-27  
    4 李子平. 约束系统的对称变换. 物理学报, 1981, 30(12):1699-1706 (Li Ziping. The transformation properties of constrained system. Acta Physica Sinica, 1981, 30(12):1699-1706(in Chinese))
    5 Bahar LY, Kwatny HG. Extension of Noether's theorem to constrained nonconservative dynamical systems. International Journal of Non-Linear Mechanics, 1987, 22(2):125-138  
    6 Liu D. Noether's theorem and its inverse of nonholonomic nonconservative dynamical systems. Science in China (Series A), 1991, 34(4):419-429
    7 Mei FX. The Noether's theory of Birkhoffan systems. Science in China (Serie A), 1993, 36(12):1456-1467
    8 梅凤翔. 广义Birkhoff系统动力学. 北京:科学出版社, 2013(Mei Fengxiang. Dynamics of Generalized Birkhoffan System. Beijing:Science Press, 2013(in Chinese))
    9 Zhang Y, Zhou Y. Symmetries and conserved quantities for fractional action-like Pfa an variational problems. Nonlinear Dynamics, 2013, 73(1-2):783-793  
    10 Zhang Y, Zhai XH. Noether symmetries and conserved quantities for fractional Birkhoffan systems. Nonlinear Dynamics, 2015, 81(1-2):469-480  
    11 梅凤翔. 分析力学(下卷). 北京:北京理工大学出版社, 2013(Mei Fengxiang. Analytical Mechanics (Ⅱ). Beijing:Beijing Institute of Technology Press, 2013(in Chinese))
    12 梅凤翔. 李群和李代数对约束力学系统的应用. 北京:科学出版社, 1999(Mei Fengxiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Beijing:Science Press, 1999 (in Chinese))
    13 梅凤翔. 约束力学系统的对称性与守恒量. 北京:北京理工大学出版社, 2004(Mei Fengxiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing:Beijing Institute of Technology Press, 2004(in Chinese))
    14 梅凤翔. 经典约束力学系统对称性与守恒量研究进展. 力学进展, 2009, 39(1):37-43(Mei Fengxiang. Advances in the symmetries and conserved quantities of classical constrained systems. Advances in Mechanics, 2009, 39(1):37-43(in Chinese))
    15 Ferreira RAC, Malinowska AB. A counterexample to a Frederico-Torres fractional Noether-type theorem. Journal of Mathematical Analysis and Applications, 2015, 429(2):1370-1373  
    16 Atanackovi? TM, Konjik S, Pilipovi? S, et al. Variational problems with fractional derivatives:invariance conditions and Noether's theorem. Nonlinear Analysis, 2009, 71(5-6):1504-1517
    17 Malinowska AB, Torres DFM. Introduction to the Fractional Calculus of Variations. London:Imperial College Press, 2012
    18 Mei FX, Xie JF, Gang TQ. Weakly Noether symmetry for nonholonomic systems of Chetaev's type. Commun Theor Phys (Beijing, China), 2008, 49(6):1413-1416  
    19 Fu JL, Chen LQ, Chen BY. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices. Science China:Physics, Mechanics, Astronomy, 2010, 53(9):1687-1698  
    20 Long ZX, Zhang Y. Noether's theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space. Acta Mechanica, 2014, 225(1):77-90  
    21 Zhai XH, Zhang Y. Noether symmetries and conserved quantities for fractional Birkhoffan systems with time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, 36:81-97  
    22 Song CJ, Zhang Y. Noether theorem for Birkhoffan systems on time scales. Journal of Mathematical Physics, 2015, 56(10):102701  
    23 Zhang Y, Zhou XS. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dynamics, 2016, 84(4):1867-1876  
    24 Herglotz G. Berührungstransformationen. Lectures at the University of Göttingen, Göttingen, 1930  
    25 Georgieva B. Symmetries of the Herglotz variational principle in the case of one independent variable. Annual of Sofia University, the Faculty of Mathematics and Informatics, 2010, 100:113-122
    26 Santos SPS, Martins N, Torres DFM. Higher-order variational problems of Herglotz type. Vietnam Journal of Mathematics, 2014, 42(4):409-419  
    27 Georgieva B, Guenther R. First Noether-type theorem for the generalized variational principle of Herglotz. Topological Methods in Nonlinear Analysis, 2002, 20(2):261-273  
    28 Georgieva B, Guenther R, Bodurov T. Generalized variational principle of Herglotz for several independent variables. First Noethertype theorem. Journal of Mathematical Physics, 2003, 44(9):3911-3927  
    29 Santos SPS, Martins N, Torres DFM. Variational problems of Herglotz type with time delay:Dubois-Reymond condition and Noether's first theorem. Discrete and Continuous Dynamical Systems, 2015, 35(9):4593-4610  
    30 Donchev V. Variational symmetries, conserved quantities and identities for several equations of mathematical physics. Journal of Mathematical Physics, 2014, 55(3):032901  
    31 梅凤翔. 经典力学从牛顿到伯克霍夫. 力学与实践, 1996, 18(4):1-8(Mei Fengxiang. Classical mechanics from Newton to Birkhoffian. Mechanics in Engineering, 1996, 18(4):1-8(in Chinese))
    32 Goldstein H, Poole C, Safko J. Classical Mechanics (Third Edition). Beijing:Higher Education Press, 2005
    33 梅凤翔,刘端,罗勇. 高等分析力学. 北京:北京理工大学出版社, 1991 (Mei Fengxiang, Liu Duan, Luo Yong. Advanced Analytical Mechanics. Beijing:Beijing Institute of Technology Press, 1991(in Chinese))
  • 加载中
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  91
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-08-04
  • 刊出日期:  2016-11-18

目录

    /

    返回文章
    返回