1 Noether AE. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, KI Ⅱ:235-257
|
2 李子平. 经典和量子约束系统及其对称性质. 北京:北京工业大学出版社, 1993(Li Ziping. Classical and Quantal Dynamics of Constrained Systems and their Symmetrical Properties. Beijing:Beijing Polytechnic University Press, 1993(in Chinese))
|
3 Djuki? Dj S, Vujanovi? B. Noether's theory in classical nonconservative mechanics. Acta Mechanica, 1975, 23(1-2):17-27
|
4 李子平. 约束系统的对称变换. 物理学报, 1981, 30(12):1699-1706 (Li Ziping. The transformation properties of constrained system. Acta Physica Sinica, 1981, 30(12):1699-1706(in Chinese))
|
5 Bahar LY, Kwatny HG. Extension of Noether's theorem to constrained nonconservative dynamical systems. International Journal of Non-Linear Mechanics, 1987, 22(2):125-138
|
6 Liu D. Noether's theorem and its inverse of nonholonomic nonconservative dynamical systems. Science in China (Series A), 1991, 34(4):419-429
|
7 Mei FX. The Noether's theory of Birkhoffan systems. Science in China (Serie A), 1993, 36(12):1456-1467
|
8 梅凤翔. 广义Birkhoff系统动力学. 北京:科学出版社, 2013(Mei Fengxiang. Dynamics of Generalized Birkhoffan System. Beijing:Science Press, 2013(in Chinese))
|
9 Zhang Y, Zhou Y. Symmetries and conserved quantities for fractional action-like Pfa an variational problems. Nonlinear Dynamics, 2013, 73(1-2):783-793
|
10 Zhang Y, Zhai XH. Noether symmetries and conserved quantities for fractional Birkhoffan systems. Nonlinear Dynamics, 2015, 81(1-2):469-480
|
11 梅凤翔. 分析力学(下卷). 北京:北京理工大学出版社, 2013(Mei Fengxiang. Analytical Mechanics (Ⅱ). Beijing:Beijing Institute of Technology Press, 2013(in Chinese))
|
12 梅凤翔. 李群和李代数对约束力学系统的应用. 北京:科学出版社, 1999(Mei Fengxiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Beijing:Science Press, 1999 (in Chinese))
|
13 梅凤翔. 约束力学系统的对称性与守恒量. 北京:北京理工大学出版社, 2004(Mei Fengxiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing:Beijing Institute of Technology Press, 2004(in Chinese))
|
14 梅凤翔. 经典约束力学系统对称性与守恒量研究进展. 力学进展, 2009, 39(1):37-43(Mei Fengxiang. Advances in the symmetries and conserved quantities of classical constrained systems. Advances in Mechanics, 2009, 39(1):37-43(in Chinese))
|
15 Ferreira RAC, Malinowska AB. A counterexample to a Frederico-Torres fractional Noether-type theorem. Journal of Mathematical Analysis and Applications, 2015, 429(2):1370-1373
|
16 Atanackovi? TM, Konjik S, Pilipovi? S, et al. Variational problems with fractional derivatives:invariance conditions and Noether's theorem. Nonlinear Analysis, 2009, 71(5-6):1504-1517
|
17 Malinowska AB, Torres DFM. Introduction to the Fractional Calculus of Variations. London:Imperial College Press, 2012
|
18 Mei FX, Xie JF, Gang TQ. Weakly Noether symmetry for nonholonomic systems of Chetaev's type. Commun Theor Phys (Beijing, China), 2008, 49(6):1413-1416
|
19 Fu JL, Chen LQ, Chen BY. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices. Science China:Physics, Mechanics, Astronomy, 2010, 53(9):1687-1698
|
20 Long ZX, Zhang Y. Noether's theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space. Acta Mechanica, 2014, 225(1):77-90
|
21 Zhai XH, Zhang Y. Noether symmetries and conserved quantities for fractional Birkhoffan systems with time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, 36:81-97
|
22 Song CJ, Zhang Y. Noether theorem for Birkhoffan systems on time scales. Journal of Mathematical Physics, 2015, 56(10):102701
|
23 Zhang Y, Zhou XS. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dynamics, 2016, 84(4):1867-1876
|
24 Herglotz G. Berührungstransformationen. Lectures at the University of Göttingen, Göttingen, 1930
|
25 Georgieva B. Symmetries of the Herglotz variational principle in the case of one independent variable. Annual of Sofia University, the Faculty of Mathematics and Informatics, 2010, 100:113-122
|
26 Santos SPS, Martins N, Torres DFM. Higher-order variational problems of Herglotz type. Vietnam Journal of Mathematics, 2014, 42(4):409-419
|
27 Georgieva B, Guenther R. First Noether-type theorem for the generalized variational principle of Herglotz. Topological Methods in Nonlinear Analysis, 2002, 20(2):261-273
|
28 Georgieva B, Guenther R, Bodurov T. Generalized variational principle of Herglotz for several independent variables. First Noethertype theorem. Journal of Mathematical Physics, 2003, 44(9):3911-3927
|
29 Santos SPS, Martins N, Torres DFM. Variational problems of Herglotz type with time delay:Dubois-Reymond condition and Noether's first theorem. Discrete and Continuous Dynamical Systems, 2015, 35(9):4593-4610
|
30 Donchev V. Variational symmetries, conserved quantities and identities for several equations of mathematical physics. Journal of Mathematical Physics, 2014, 55(3):032901
|
31 梅凤翔. 经典力学从牛顿到伯克霍夫. 力学与实践, 1996, 18(4):1-8(Mei Fengxiang. Classical mechanics from Newton to Birkhoffian. Mechanics in Engineering, 1996, 18(4):1-8(in Chinese))
|
32 Goldstein H, Poole C, Safko J. Classical Mechanics (Third Edition). Beijing:Higher Education Press, 2005
|
33 梅凤翔,刘端,罗勇. 高等分析力学. 北京:北京理工大学出版社, 1991 (Mei Fengxiang, Liu Duan, Luo Yong. Advanced Analytical Mechanics. Beijing:Beijing Institute of Technology Press, 1991(in Chinese))
|