EFFECT OF COMPRESSION SURFACE DEFORMATION ON AERODYNAMIC PERFORMANCES OF WAVERIDERS
-
摘要: 乘波体是一种利用激波包裹特性获得高升阻比的高速飞行器构型.已有研究中,乘波体气动性能的改善主要依赖于给定源流场条件下的前缘型线优化.本文采用数值优化和计算流体力学模拟为主要手段分析了乘波体压缩面变化对其气动性能的影响,以期有效拓展乘波体的设计空间.主要内容如下:首先给出了一种基于表面局部变形的乘波体设计方法.其次结合运用增量修正参数化方法、计算流体力学分析和微分演化算法构造了乘波体压缩面外形气动优化设计流程,以一种椭圆锥形流场生成的乘波体作为基准构型开展了无黏优化.之后从优化结果中选择升阻比递增的6个典型构型进行前缘钝化处理后,基于N-S方程对其气动性能进行了评估.最后综合依据无黏/黏性计算结果分析了乘波体压缩面变化对其气动性能的影响.结果表明该部分形状的改变对乘波体气动性能影响十分明显,在升力面积不变的条件下,乘波体压缩面形状变化可导致其升阻比出现成倍变化,即使在升力不减条件下,升阻比较基准构型也可获得超过14%的提升.此外,还可导致乘波体相对压心系数出现明显偏移.Abstract: A waverider is a type of hypersonic lifting body that has the entire bow shock underneath the body as well as attached to the leading edge when flying at its design Mach number.Present research for improving the aerodynamic performance of waveriders mainly focused on searching an optimal profile of the leading edge on the condition of given a specific generating flow field.In order to further extend the design space of waveriders, a novel design method that is based on a local shape deformation technique is presented in this paper.Moreover, an inviscid analysis-based optimization study was carried out to research the effect of compression surface deformation on aerodynamic performances of waveriders by integrating the increment-based parameterization method, the computational fluid dynamic analysis, and the differential evolution algorithm.Afterwards, six selected waverider configurations were polished to blunt leading edges, and then their aerodynamic performances were evaluated by solving the Navier-Stokes equations.The results show that both the L/D and the relative pressure center coefficient of the waveriders produce significant changes with the variation of compression surface shape.Among all waveriders, the maximal difference of the L/D is more than double.Even by considering the lift constraint, the increment of the L/D is more than 14 percent in comparison with the baseline configuration.In addition, the value of relative migration of the relative pressure center coefficients is remarkable.
-
表 1 设计变量的上下边界
Table 1. Boundary values of design space
表 2 两种边界构型的设计变量和气动参数值
Table 2. Values of design variables and aerodynamic parameters of the two configurations
表 3 典型构型黏性/无黏气动参数比较
Table 3. Comparison of aerodynamic parameters based on different numerical models for typical waveriders
-
[1] 叶友达. 近空间高速飞行器气动特性研究与布局设计优化. 力学进展,2009,39(6):683-694Ye Youda. Study on aerodynamic characteristic and design of optimization for high speed near space vehicles. Advances in Mechanics,2009,39(6):683-694(in Chinese) [2] Ferguson F,Dasque N,Dhanasar M, et al. Waverider design and analysis. AIAA Paper 2015-3508, 2015 [3] Lunan DA. Waverider,a revised chronology. AIAA Paper 2015-3529, 2015 [4] Ferguson F,Dasque N,Dhanasar M, et al. The design, analysis and performance evaluation of waverider configurations for hypersonic vehicle applications. AIAA Paper 2015-1008, 2015 [5] Jones JG,Moore KC,Pike J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields. Ingenieur-Archiv,1968,37:56-72 doi: 10.1007/BF00532683 [6] Rasmussen ML. Waverider configurations derived from inclined circular and elliptic cones. Journal of Spacecraft and Rockets,1980,17(5):537-545 http://cn.bing.com/academic/profile?id=7178b8ab8440f601e9cbc686c329d33f&encoded=0&v=paper_preview&mkt=zh-cn [7] Doty RT,Rasmussen ML. Approximation for hypersonic flow past an inclined cone. AIAA Journal,1973,11:1310-1315 doi: 10.2514/3.6913 [8] Rasmussen ML,Clement LW. Cone-derived waveriders with longitudinal curvature. AIAA Paper 84-2100, 1984 [9] Takashima N,Lewis MJ. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration,AIAA Paper 94-0380, 1994 [10] Cui K,Yang GW. Waverider configurations derived from general conical Flowfields. Acta Mechanica Sinica,2007,23(3):247-255 doi: 10.1007/s10409-007-0069-2 [11] Cui K,Yang GW. The effect of conical flowfields on the performance of waveriders at mach 6. Chinese Science Bulletin,2007,52(1):51-64 http://cn.bing.com/academic/profile?id=66fded30ce1d89666ae2423a4c3a3b00&encoded=0&v=paper_preview&mkt=zh-cn [12] Ding F,Liu J, Chen CB, et al. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive. Aerospace Science and Technology,2015,42:297-308 doi: 10.1016/j.ast.2015.01.025 [13] 吕侦军,王江峰,伍贻兆等. 多级压缩锥导乘波体设计与分析. 宇航学报,2015,36(5):518-523 http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201505007.htmLü Zhenjun, Wang Jiangfeng, Wu Yizhao, et al. Design and analysis of multistage compression cone-derived waverider configuration. Journal of Astronautics, 2015, 36(5):518-523(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201505007.htm [14] Rodi PE. The osculating flowfield method of waverider geometry generation. AIAA Paper 2005-0511, 2005 [15] 贺旭照,倪鸿礼. 密切内锥乘波体设计方法和性能分析. 力学学报,2011,43(5):803-808 http://lxxb.cstam.org.cn/CN/abstract/abstract142357.shtmlHe Xuzhao, Ni Hongli. Osculating inward turning cone (OIC) wave rider-design methods and performace analysis. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):803-808(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract142357.shtml [16] 贺旭照,倪鸿礼. 密切曲面锥乘波体-设计方法和性能分析. 力学学报, 2011,43(6):1077-1082 http://lxxb.cstam.org.cn/CN/abstract/abstract142357.shtmlHe Xuzhao, Ni Hongli. Osculating curved cone(occ) waverider:design methods and performance analysis. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract142357.shtml [17] Lyu YC, Jiang CW, Gao ZX, et al. Passive waverider method and its validation. AIAA Paper 2014-4346, 2014 [18] Hu SY, Jiang CW, Gao ZX, et al. Design of periodic cruise vehicle based on the passive waverider method. AIAA Paper 2015-4546, 2015 [19] Steelant J, Langener T, Matteo FD, et al. Conceptual design of the high-speed propelled experimental flight test vehicle HEXAFLY. AIAA Paper 2015-3539, 2015 [20] Pezzella G, Marini M, Reimann B, et al. Aerodynamic design analysis of the HEXAFLY-INT hypersonic glider. AIAA Paper 2015-3644, 2015 [21] Ding F,Liu J,Shen CB, et al. Novel inlet——airframe integration methodology for hypersonic waverider vehicles. Acta Astronautica,2015,111:178-197 doi: 10.1016/j.actaastro.2015.02.016 [22] Liu J, Ding F, Huang W, et al. Novel approach for designing a hypersonic gliding——cruising dual waverider vehicle. Acta Astronautica, 2014, 102:81-88 doi: 10.1016/j.actaastro.2014.04.024 [23] Li YQ,An P,Pan CJ, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody. AIAA Paper 2014-3229, 2014 [24] Cui K,Hu SC,Li GL, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets. Science China Technology Science,2013,56(8):1980-1988 doi: 10.1007/s11431-013-5288-0 [25] 胡守超, 崔凯, 李广利等. 基于实验设计方法的高超声速飞机前缘型线优化分析. 力学学报, 2016, 48(2):290-299 http://lxxb.cstam.org.cn/CN/abstract/abstract145605.shtmlHu Shouchao, Cui Kai, Li Guangli, et al. Optimization and analysis of the leading edge shape for hypersonic airplanes based on DOE methods. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):290-299(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145605.shtml [26] Bowcutt KG, Anderson JD, Capriotti D. Viscous optimized hypersonic waveriders. AIAA Paper 87-0272, 1987 [27] Corda S, Anderson JD. Viscous optimized hypersonic waveriders designed from axisymmertirc flow fields. AIAA Paper 88-0396, 1988 [28] 张锋涛, 崔凯, 杨国伟等. 基于神经网络技术的乘波体优化设计. 力学学报, 2009, 41(3):418-424 http://lxxb.cstam.org.cn/CN/abstract/abstract141843.shtmlZhang Fengtao, Cui Kai, Yang Guowei, et al. Optimization design of waverider based on the artificial neural networks. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3):418-424(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract141843.shtml [29] Lobbia MA, Suzuki K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics. AIAA Journal, 2015, 53(6):1590-1601 doi: 10.2514/1.J053458 [30] Ryan KM, Lewis MJ, Yu KH. Comparison of robust optimization methods applied to hypersonic vehicle design. Journal of Aircraft, 2015, 52(5):1510-1523 doi: 10.2514/1.C032986 [31] Lobbia MA. Optimization of waverider-derived crew reentry vehicles using a rapid aerodynamics analysis approach. AIAA Paper 2015-0757, 2015 [32] Lobbia MA. Multidisciplinary design optimization of hypersonic transport configurations using waveriders. AIAA Paper 2014-2359, 2014 [33] Bauer SXS. Analysis of Two Viscous Optimized Waveriders//Proceeding of the First International Hypersonic Waverider Symposium, 1990, Univ. of Maryland, College Park, MD, USA [34] Charles EC. Interpretation of waverider performance data using computational fluid dynamics. Journal of Aircraft, 1994, 31(5):1095-1100 doi: 10.2514/3.46616 [35] Stron R, Price K. Differential evolution——a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11:341-359 doi: 10.1023/A:1008202821328 -