EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆颗粒在剪切流中旋转特性的数值研究

陈荣前 聂德明

陈荣前, 聂德明. 椭圆颗粒在剪切流中旋转特性的数值研究[J]. 力学学报, 2017, 49(2): 257-267. doi: 10.6052/0459-1879-16-002
引用本文: 陈荣前, 聂德明. 椭圆颗粒在剪切流中旋转特性的数值研究[J]. 力学学报, 2017, 49(2): 257-267. doi: 10.6052/0459-1879-16-002
Chen Rongqian, Nie Deming. NUMERICAL STUDY ON THE ROTATION OF AN ELLIPTICAL PARTICLE IN SHEAR FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 257-267. doi: 10.6052/0459-1879-16-002
Citation: Chen Rongqian, Nie Deming. NUMERICAL STUDY ON THE ROTATION OF AN ELLIPTICAL PARTICLE IN SHEAR FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 257-267. doi: 10.6052/0459-1879-16-002

椭圆颗粒在剪切流中旋转特性的数值研究

doi: 10.6052/0459-1879-16-002
基金项目: 

国家自然科学基金 11272302

国家自然科学基金 11132008

浙江省自然科学基金 LY15A020004

详细信息
    通讯作者:

    2) 聂德明, 教授, 主要研究方向:颗粒多相流、格子Boltzmann方法.E-mail:nieinhz@cjlu.edu.cn

  • 中图分类号: O359

NUMERICAL STUDY ON THE ROTATION OF AN ELLIPTICAL PARTICLE IN SHEAR FLOW

  • 摘要: 研究颗粒在流体剪切作用下的运动特性是理解和预测颗粒悬浮流流动行为的关键.当流体的惯性不能忽略时,颗粒的运动往往变得非常复杂.本文采用格子Boltzmann方法对中等雷诺数下椭圆颗粒在剪切流中的旋转运动进行了模拟.首先,研究了雷诺数(0 < Re≤170)的影响,结果表明当雷诺数低于临界值时,颗粒以周期性的方式旋转,角速度最小时对应的长轴方向随着雷诺数的增大而逐渐远离水平方向,而且这一倾角与雷诺数呈分段线性关系;当雷诺数大于临界值时,椭圆形颗粒最终保持静止状态,且静止时的转角与雷诺数呈幂函数关系,雷诺数越大,转角越小,椭圆的长轴越远离水平位置.其次,研究了椭圆颗粒的长短轴之比α(1≤α≤10)的影响,结果表明颗粒旋转的周期与α呈幂函数关系,α越大,颗粒旋转周期越小.此外,当α超过临界值时,颗粒也在水平位置附近保持静止状态,此时的转角与α也呈幂函数关系,α越大,转角越小.研究还发现,当雷诺数较大时椭圆颗粒在旋转过程中会产生过冲现象.

     

  • 图  1  反弹边界条件

    Figure  1.  Illustration of the bounced-back scheme

    图  2  椭圆形颗粒在剪切流中的运动示意图

    Figure  2.  Schematic of an elliptical particle subjected to simple shear flow

    图  3  Jeffery[1]理论解与本文模拟结果的对比

    Figure  3.  Comparison of Jeffery solution[1] and the present simulationresult

    图  4  不同雷诺数下椭圆颗粒的旋转周期的对比

    Figure  4.  The period of the rotation of the elliptical particle at differentReynolds number

    图  5  不同雷诺数下椭圆颗粒旋转的角度和角速度

    Figure  5.  The orientation and rotation velocity of the elliptical particle atdifferent Reynolds numbers

    图  6  椭圆颗粒转速最小时对应的转角

    Figure  6.  The orientation of the elliptical particle when its rotation velocityis smallest

    图  7  不同雷诺数下椭圆颗粒在剪切流中的旋转周期

    Figure  7.  The period of the rotation of elliptical particle at differentReynolds number

    图  8  椭圆转角$\theta=0.94 \pi $时不同雷诺数下的流线结构及压力分布

    Figure  8.  The streamlines and pressure for $ \theta=0.94 \pi $ at different Reynoldsnumbers

    图  9  椭圆颗粒静止时不同雷诺数下的流线结构和压力分布

    Figure  9.  The streamlines and pressure at different Reynolds numbers when theparticle becomes stationary

    图  10  不同雷诺数下椭圆颗粒倾角随时间的变化

    Figure  10.  Time history of orientation of elliptical particle for differentReynolds numbers

    图  11  不同雷诺数下椭圆颗粒角速度随时间的变化

    Figure  11.  Time history of rotational velocity of elliptical for differentReynolds numbers

    图  12  不同雷诺数下椭圆颗粒的最终倾角

    Figure  12.  Final orientation of elliptical particle at different Reynoldsnumbers

    图  13  不同$\alpha $对应的椭圆颗粒旋转角度和角速度的变化

    Figure  13.  The orientation and rotational velocity of elliptical particle fordifferent $\alpha $

    图  14  雷诺数分别为5和10对应的周期与$\alpha $的关系

    Figure  14.  The period of the rotation of elliptical particle fordifferent $ \alpha $ at $Re=5$ and 10, respectively

    图  15  $Re=10$时不同长短轴之比对应的流线结构及压力分布

    Figure  15.  The streamlines and pressure for different $\alpha $ at $Re=10$

    图  16  雷诺数分别为5和10对应的最终倾角与$\alpha $的关系

    Figure  16.  The final orientation of elliptical particle fordifferent $ \alpha $ at $Re=5$ and 10, respectively

  • [1] Jeffery GB. The motion of ellipsoidal particles immersed in a viscous fluid//Proceedings of the Royal Society A, 1922, 102(715):161-179
    [2] Batchelor GK, Green JT. The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. Journal of Fluid Mechanics, 1972, 56(2):375-400 doi: 10.1017/S0022112072002927
    [3] Feng J, Hu H, Joseph D. Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid Part 1. Sedimentation. Journal of Fluid Mechanics, 1994, 261:95-134 doi: 10.1017/S0022112094000285
    [4] Feng J, Joseph DD. The unsteady motion of solid bodies in creeping flows. Journal of Fluid Mechanics, 1995, 303:83-102 doi: 10.1017/S0022112095004186
    [5] Ladd AJC. Sedimentation of homogeneous suspensions of nonBrownian spheres. Physics of Fluids, 1997, 9:491-499 doi: 10.1063/1.869212
    [6] Aidun CK, Ding EJ. Dynamics of particle sedimentation in a vertical channel:period doubling bifurcation and chaotic state. Physics of Fluids, 2003, 15(6):1612 doi: 10.1063/1.1571825
    [7] 费明龙, 徐小蓉, 孙其诚等.颗粒介质固——流态转变的理论分析及实验研究.力学学报, 2016, 48(1):48-55 http://lxxb.cstam.org.cn/CN/abstract/abstract145710.shtml

    Fei Minglong, Xu Xiaorong, Sun Qicheng, et al. Studies on the transition between solidand fluid-like states of granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):48-55(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145710.shtml
    [8] Ardekani AM, Rangel RH. Unsteady motion of two solid spheres in Stokes flow. Physics of Fluids, 2006, 18:103306 doi: 10.1063/1.2363351
    [9] Guazzelli È, Hinch J. Fluctuations and instability in sedimentation. Journal of Fluid Mechanics, 2011, 43:97-116 doi: 10.1146/annurev-fluid-122109-160736
    [10] 胡平, 张兴伟, 牛小东等.三圆形颗粒在通道中沉降运动的数值研究.力学学报, 2014, 46(5):673-684 http://lxxb.cstam.org.cn/CN/abstract/abstract144818.shtml

    Hu Ping, Zhang Xingwei, Niu Xiaodong, et al. Numerical study on the sedimented motion characteristics of three aligned circular particles in the inclined channels. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5):673-684(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract144818.shtml
    [11] Rosén T, Lundell F, Aidun CK. Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. Journal of Fluid Mechanics, 2014, 738(1):563-590 https://www.researchgate.net/publication/263031374_Effect_of_fluid_inertia_on_the_dynamics_and_scaling_of_neutrally_buoyant_particles_in_shear_flow
    [12] Hwang WR, Hulsen MA, Meijer HEH. Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames. Journal of Non-Newtonian Fluid Mechanics, 2004, 121(1):15-33 doi: 10.1016/j.jnnfm.2004.03.008
    [13] Choi YJ, Hulsen MA, Meijer HEH. An extended finite element method for the simulation of particulate viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(11):607-624 https://www.researchgate.net/publication/228741941_An_extended_finite_element_method_for_the_simulation_of_particulate_viscoelastic_flows
    [14] Lundell F, Carlsson A. Heavy ellipsoids in creeping shear flow:Transitions of the particle rotation rate and orbit shape. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2010, 81(1):016323
    [15] Pasquino R, D'Avino G, Maffettone PL, et al. Migration and chaining of noncolloidal spheres suspended in a sheared viscoelastic medium. Experiments and numerical simulations. Journal of NonNewtonian Fluid Mechanics, 2014, 203(1):1-8 https://www.researchgate.net/publication/259128173_Migration_and_chaining_of_noncolloidal_spheres_suspended_in_a_sheared_viscoelastic_medium_Experiments_and_numerical_simulations
    [16] Mikulencak DR, Morris JF. Stationary shear flow around fixed and free bodies at finite Reynolds number. Journal of Fluid Mechanics, 2004, 520:215-242 doi: 10.1017/S0022112004001648
    [17] Subramanian G, Koch DL. Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Physics of Fluids, 2006, 18:073302 doi: 10.1063/1.2215370
    [18] Subramanian G, Koch DL. Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Physical Review Letters, 2006, 96:134503 doi: 10.1103/PhysRevLett.96.134503
    [19] Yacoubi AE, Xu S, Wang ZJ. Computational study of the interaction of freely moving particles at intermediate Reynolds numbers. Journal of Fluid Mechanics, 2012, 705(2):134-148 https://www.researchgate.net/publication/258661426_Computational_study_of_the_interaction_of_freely_moving_particles_at_intermediate_Reynolds_numbers
    [20] Nie D, Lin J, Zheng M. Direct numerical simulation of multiple particles sedimentation at an intermediate reynolds number. Communications in Computational Physics, 2014, 16(3):675-698 doi: 10.4208/cicp.270513.130314a
    [21] Nie D, Lin J, Chen R. Grouping behavior of coaxial settling particles in a narrow channel. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2016, 93:013114 https://www.researchgate.net/publication/291954231_Grouping_behavior_of_coaxial_settling_particles_in_a_narrow_channel
    [22] Ding E, Aidun CK. The dynamics and scaling law for particles suspended in shear flow with inertia. Journal of Fluid Mechanics, 2000, 423:317-344 doi: 10.1017/S0022112000001932
    [23] Huang H, Yang X, Krafczyk M, et al. Rotation of spheroidal particles in Couette flows. Journal of Fluid Mechanics, 2012, 692:369-394 doi: 10.1017/jfm.2011.519
    [24] Huang SL, Chen SD, Pan TW, et al. The motion of a neutrally buoyant particle of an elliptic shape in two dimensional shear flow:a numerical study. Physics of Fluids, 2015, 27(5):083303
    [25] Lallemand P, Luo LS. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, 2003, 184(2):406-421 doi: 10.1016/S0021-9991(02)00022-0
    [26] Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part Ⅰ. Theoretical foundation. Journal of Fluid Mechanics, 1994, 271:285-309 doi: 10.1017/S0022112094001771
    [27] Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part Ⅱ. Numerical results. Journal of Fluid Mechanics, 1994, 271:311-339 doi: 10.1017/S0022112094001783
    [28] Aidun CK, Lu Y, Ding E. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. Journal of Fluid Mechanics, 1998, 373:287-311 doi: 10.1017/S0022112098002493
    [29] Benzi R, Succi S, Vergassola MR. The lattice Boltzmann equation:theory and applications. Physics Reports, 1992, 222:145-197 doi: 10.1016/0370-1573(92)90090-M
    [30] Qian YH, D'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6):479-484 doi: 10.1209/0295-5075/17/6/001
    [31] Chen SY, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30:329-364 doi: 10.1146/annurev.fluid.30.1.329
  • 加载中
图(16)
计量
  • 文章访问数:  1338
  • HTML全文浏览量:  159
  • PDF下载量:  832
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-04
  • 网络出版日期:  2017-01-05
  • 刊出日期:  2017-03-18

目录

    /

    返回文章
    返回