[1] |
Jeffery GB. The motion of ellipsoidal particles immersed in a viscous fluid//Proceedings of the Royal Society A, 1922, 102(715):161-179
|
[2] |
Batchelor GK, Green JT. The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. Journal of Fluid Mechanics, 1972, 56(2):375-400 doi: 10.1017/S0022112072002927
|
[3] |
Feng J, Hu H, Joseph D. Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid Part 1. Sedimentation. Journal of Fluid Mechanics, 1994, 261:95-134 doi: 10.1017/S0022112094000285
|
[4] |
Feng J, Joseph DD. The unsteady motion of solid bodies in creeping flows. Journal of Fluid Mechanics, 1995, 303:83-102 doi: 10.1017/S0022112095004186
|
[5] |
Ladd AJC. Sedimentation of homogeneous suspensions of nonBrownian spheres. Physics of Fluids, 1997, 9:491-499 doi: 10.1063/1.869212
|
[6] |
Aidun CK, Ding EJ. Dynamics of particle sedimentation in a vertical channel:period doubling bifurcation and chaotic state. Physics of Fluids, 2003, 15(6):1612 doi: 10.1063/1.1571825
|
[7] |
费明龙, 徐小蓉, 孙其诚等.颗粒介质固——流态转变的理论分析及实验研究.力学学报, 2016, 48(1):48-55 http://lxxb.cstam.org.cn/CN/abstract/abstract145710.shtmlFei Minglong, Xu Xiaorong, Sun Qicheng, et al. Studies on the transition between solidand fluid-like states of granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):48-55(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145710.shtml
|
[8] |
Ardekani AM, Rangel RH. Unsteady motion of two solid spheres in Stokes flow. Physics of Fluids, 2006, 18:103306 doi: 10.1063/1.2363351
|
[9] |
Guazzelli È, Hinch J. Fluctuations and instability in sedimentation. Journal of Fluid Mechanics, 2011, 43:97-116 doi: 10.1146/annurev-fluid-122109-160736
|
[10] |
胡平, 张兴伟, 牛小东等.三圆形颗粒在通道中沉降运动的数值研究.力学学报, 2014, 46(5):673-684 http://lxxb.cstam.org.cn/CN/abstract/abstract144818.shtmlHu Ping, Zhang Xingwei, Niu Xiaodong, et al. Numerical study on the sedimented motion characteristics of three aligned circular particles in the inclined channels. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5):673-684(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract144818.shtml
|
[11] |
Rosén T, Lundell F, Aidun CK. Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. Journal of Fluid Mechanics, 2014, 738(1):563-590 https://www.researchgate.net/publication/263031374_Effect_of_fluid_inertia_on_the_dynamics_and_scaling_of_neutrally_buoyant_particles_in_shear_flow
|
[12] |
Hwang WR, Hulsen MA, Meijer HEH. Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames. Journal of Non-Newtonian Fluid Mechanics, 2004, 121(1):15-33 doi: 10.1016/j.jnnfm.2004.03.008
|
[13] |
Choi YJ, Hulsen MA, Meijer HEH. An extended finite element method for the simulation of particulate viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(11):607-624 https://www.researchgate.net/publication/228741941_An_extended_finite_element_method_for_the_simulation_of_particulate_viscoelastic_flows
|
[14] |
Lundell F, Carlsson A. Heavy ellipsoids in creeping shear flow:Transitions of the particle rotation rate and orbit shape. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2010, 81(1):016323
|
[15] |
Pasquino R, D'Avino G, Maffettone PL, et al. Migration and chaining of noncolloidal spheres suspended in a sheared viscoelastic medium. Experiments and numerical simulations. Journal of NonNewtonian Fluid Mechanics, 2014, 203(1):1-8 https://www.researchgate.net/publication/259128173_Migration_and_chaining_of_noncolloidal_spheres_suspended_in_a_sheared_viscoelastic_medium_Experiments_and_numerical_simulations
|
[16] |
Mikulencak DR, Morris JF. Stationary shear flow around fixed and free bodies at finite Reynolds number. Journal of Fluid Mechanics, 2004, 520:215-242 doi: 10.1017/S0022112004001648
|
[17] |
Subramanian G, Koch DL. Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Physics of Fluids, 2006, 18:073302 doi: 10.1063/1.2215370
|
[18] |
Subramanian G, Koch DL. Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Physical Review Letters, 2006, 96:134503 doi: 10.1103/PhysRevLett.96.134503
|
[19] |
Yacoubi AE, Xu S, Wang ZJ. Computational study of the interaction of freely moving particles at intermediate Reynolds numbers. Journal of Fluid Mechanics, 2012, 705(2):134-148 https://www.researchgate.net/publication/258661426_Computational_study_of_the_interaction_of_freely_moving_particles_at_intermediate_Reynolds_numbers
|
[20] |
Nie D, Lin J, Zheng M. Direct numerical simulation of multiple particles sedimentation at an intermediate reynolds number. Communications in Computational Physics, 2014, 16(3):675-698 doi: 10.4208/cicp.270513.130314a
|
[21] |
Nie D, Lin J, Chen R. Grouping behavior of coaxial settling particles in a narrow channel. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2016, 93:013114 https://www.researchgate.net/publication/291954231_Grouping_behavior_of_coaxial_settling_particles_in_a_narrow_channel
|
[22] |
Ding E, Aidun CK. The dynamics and scaling law for particles suspended in shear flow with inertia. Journal of Fluid Mechanics, 2000, 423:317-344 doi: 10.1017/S0022112000001932
|
[23] |
Huang H, Yang X, Krafczyk M, et al. Rotation of spheroidal particles in Couette flows. Journal of Fluid Mechanics, 2012, 692:369-394 doi: 10.1017/jfm.2011.519
|
[24] |
Huang SL, Chen SD, Pan TW, et al. The motion of a neutrally buoyant particle of an elliptic shape in two dimensional shear flow:a numerical study. Physics of Fluids, 2015, 27(5):083303
|
[25] |
Lallemand P, Luo LS. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, 2003, 184(2):406-421 doi: 10.1016/S0021-9991(02)00022-0
|
[26] |
Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part Ⅰ. Theoretical foundation. Journal of Fluid Mechanics, 1994, 271:285-309 doi: 10.1017/S0022112094001771
|
[27] |
Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part Ⅱ. Numerical results. Journal of Fluid Mechanics, 1994, 271:311-339 doi: 10.1017/S0022112094001783
|
[28] |
Aidun CK, Lu Y, Ding E. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. Journal of Fluid Mechanics, 1998, 373:287-311 doi: 10.1017/S0022112098002493
|
[29] |
Benzi R, Succi S, Vergassola MR. The lattice Boltzmann equation:theory and applications. Physics Reports, 1992, 222:145-197 doi: 10.1016/0370-1573(92)90090-M
|
[30] |
Qian YH, D'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6):479-484 doi: 10.1209/0295-5075/17/6/001
|
[31] |
Chen SY, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30:329-364 doi: 10.1146/annurev.fluid.30.1.329
|