EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑曲率纵向变形效应的大变形柔性梁刚柔耦合动力学建模与仿真

章孝顺 章定国 洪嘉振

章孝顺, 章定国, 洪嘉振. 考虑曲率纵向变形效应的大变形柔性梁刚柔耦合动力学建模与仿真[J]. 力学学报, 2016, 48(3): 692-701. doi: 10.6052/0459-1879-15-385
引用本文: 章孝顺, 章定国, 洪嘉振. 考虑曲率纵向变形效应的大变形柔性梁刚柔耦合动力学建模与仿真[J]. 力学学报, 2016, 48(3): 692-701. doi: 10.6052/0459-1879-15-385
Zhang Xiaoshun, Zhang Dingguo, Hong Jiazheny. RIGID-FLEXIBLE COUPLING DYNAMIC MODELING AND SIMULATION WITH THE LONGITUDINAL DEFORMATION INDUCED CURVATURE EFFECT FOR A ROTATING FLEXIBLE BEAM UNDER LARGE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 692-701. doi: 10.6052/0459-1879-15-385
Citation: Zhang Xiaoshun, Zhang Dingguo, Hong Jiazheny. RIGID-FLEXIBLE COUPLING DYNAMIC MODELING AND SIMULATION WITH THE LONGITUDINAL DEFORMATION INDUCED CURVATURE EFFECT FOR A ROTATING FLEXIBLE BEAM UNDER LARGE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 692-701. doi: 10.6052/0459-1879-15-385

考虑曲率纵向变形效应的大变形柔性梁刚柔耦合动力学建模与仿真

doi: 10.6052/0459-1879-15-385
基金项目: 国家自然科学基金(11272155,11132007),江苏省"333工程"(BRA2011172),中央高校基本科研业务专项资金(30920130112009)资助项目.
详细信息
    通讯作者:

    章定国,教授,主要研究方向:多体系统动力学与控制.E-mail:zhangdg419@mail.njust.edu.cn

  • 中图分类号: O313.7

RIGID-FLEXIBLE COUPLING DYNAMIC MODELING AND SIMULATION WITH THE LONGITUDINAL DEFORMATION INDUCED CURVATURE EFFECT FOR A ROTATING FLEXIBLE BEAM UNDER LARGE DEFORMATION

  • 摘要: 对在平面内做大范围转动的中心刚体柔性梁系统的动力学进行了研究,建立了考虑大变形效应的系统刚柔耦合动力学模型,并进行了动力学仿真.该动力学模型不但考虑了柔性梁横向弯曲变形和纵向变形(包含轴向拉伸变形和横向弯曲变形而引起的纵向缩短项),还考虑了纵向变形对曲率的影响,称为曲率纵向变形效应.在以往的研究中,柔性梁的横向弯曲变形能往往直接使用柔性梁横向弯曲变形来表达,并没有考虑纵向变形的影响.为了考虑柔性梁纵向变形对横向弯曲变形能的影响,在浮动坐标系下使用柔性梁参数方程形式的精确曲率公式来计算柔性梁的弯曲变形能.在此基础上建立了基于浮动坐标系的考虑曲率纵向变形效应的刚耦合动力学模型.论文给出了数值仿真算例,验证了本文所建的动力学模型既能适用于柔性梁的小变形问题,又能适用于大变形问题,且较现有高次刚柔耦合动力学模型更加适用于大变形问题的处理.论文还通过与能处理柔性梁大变形问题的绝对节点坐标法的比较,验证了模型的正确性.

     

  • 1 Likins PW. Finite element appendage equations for hybrid coordinate dynamic analysis. Journal of Solids and Structures, 1972, 8:790-831
    2 Kane TR, Ryan RR, Banerjee AK. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dynamics,1987, 10(2): 139-150  
    3 Wallrapp O, Schwertassek R. Representation of geometric stiffening in multi-body system simulation. International Journal for Numerical Methods in Engineering, 1991, 32: 1833-1850  
    4 Bakr EM, Shabana AA. Geometrically nonlinear analysis of multibody system. Computer and Structures, 1986, 23(6): 739-751  
    5 Wu SC, Haug E. Geometric non-linear substructuring for dynamics of flexible mechanical systems. International Journal for Numerical Methods in Engineering, 1988, 26: 2211-2226  
    6 Wallrapp O, Schwertassek R. Representation of geometric stiffening in multi-body system simulation. International Journal for Numerical Methods in Engineering, 1991, 32: 1833-1850  
    7 洪嘉振,尤超蓝. 刚柔耦合系统动力学研究进展. 动力学与控制学报,2004,2(2): 1-6 (Hong Jiazhen, You Chaolan. Advances in dynamics of rigid-flexible coupling system. Journal of Dynamics and Control, 2004, 2(2): 1-6 (in Chinese))
    8 Liu JY, Hong JZ. Geometric stiffening effect on rigid-flexible coupling dynamic of an elastic beam. Journal of Sound and Vibration,2004, 278: 1147-1162  
    9 蔡国平,洪嘉振. 旋转运动柔性梁的假设模态方法研究. 力学学报,2005,37(1): 48-56 (Cai Guoping, Hong Jiazhen. Assumed mode method of a rotating flexible beam. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 48-56 (in Chinese))
    10 章定国,余纪邦. 作大范围运动的柔性梁的动力学分析. 振动工程学报,2006,19(4): 475-479 (Zhang Dingguo, Yu Jibang. Dynamical analysis of a flexible cantilever beam with large overall motions. Journal of Vibration Engineering, 2006,19(4): 475-479 (in Chinese))
    11 刘锦阳,李彬,洪嘉振. 做大范围空间运动柔性梁的刚-柔耦合动力学. 力学学报,2006,38(2): 276-282 (Liu Jinyang, Li Bin, Hong Jiazhen. Rigid-flexible coupling dynamics of a flexible beam with three-dimensional large overall motion. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 276-282 (in Chinese))
    12 邓峰岩,和兴锁,李亮等. 耦合变形对大范围运动柔性梁动力学建模的影响. 计算力学学报,2006,23(5): 599-606 (Deng Fengyan, He Xingsuo, Li Liang, et al. Dynamics modeling of the elastic beam undergoing large overall motion considering coupling effect in deformation. Chinese Journal of Computational Mechanics, 2006,23(5): 599-606 (in Chinese))
    13 和兴锁,邓峰岩,王睿. 具有大范围运动和非线性变形的空间柔性梁的精确动力学建模. 物理学报,2010,59(3): 1428-1436 (He Xingsuo, Deng Fengyan, Wang Rui. Exact dynamic modeling of a spatial flexible beam with large overall motion and nonlinear deformation. Acta Physica Sinica, 2010, 59(3): 1428-1436 (in Chinese))
    14 吴胜宝,章定国. 大范围运动刚体-柔性梁刚柔耦合动力学分析. 振动工程学报,2011,24(1): 1-7 (Wu Shengbao, Zhang Dingguo. Rigid-flexible coupling dynamic analysis of hub-flexible beam with large overall motion. Journal of Vibration Engineering, 2011, 24(1):1-7 (in Chinese))
    15陈思佳,章定国. 中心刚体-变截面梁系统的动力学特性研究. 力学学报,2011,43(4): 790-794 (Chen Sijia, Zhang Dingguo. Dynamics of hub-variable section beam systems. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 790-794 (in Chinese))
    16 方建士,章定国. 旋转悬臂梁的刚柔耦合动力学建模与频率分析. 计算力学学报,2012,29(3): 333-339 (Fang Jianshi, Zhang Dingguo. Rigid-flexible coupling dynamic modeling and frequency analysis of a rotating cantilever beam. Chinese Journal of Computational Mechanics, 2012, 29(3): 333-339 (in Chinese))
    17 Shabana AA. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. no. MBS96-1-UIC, 1996
    18 Berzeri M, Shabana AA. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. Journal of Sound and Vibration, 2000, 235(4): 539-565  
    19 Berzeri M, Shabana AA. Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 2002, 7: 357-387  
    20 Omar MA, Shabana AA. A two-dimensional shear deformable beam for large rotation and deformation problems. Journal of Sound and Vibration, 2001, 243(3): 565-576  
    21 Shabana AA, Mikkola AM. Use of the finite element absolute nodal coordinate formulation in modeling slope discontinuity. Transactions of the ASME, Journal of Mechanical Design, 2003, 125: 342-350  
    22 Yoo HH, Kim JM, Chung J. Equilibrium and modal analyses of rotating multibeam structures employing multiple reference frames. Journal of Sound and Vibration, 2007, 302: 789-805  
    23 Gerstmayr J, Irschik H. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. Journal of Sound and Vibration, 2008,318(3): 461-487  
    24 Liu C, Tian Q, Hu HY. New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dynamics, 2012, 70(3): 1903-1918  
    25 Liu JY, Hong JZ. Geometric stiffening effect on rigid-flexible coupling dynamic of an elastic beam. Journal of Sound and Vibration,2004, 278: 1147-1162  
    26 Liu ZY, Hong JH, Liu JY. Complete geometric nonlinear formulation for rigid-flexible coupling dynamics. Journal of Central South University of Technology, 2009, 16: 119-124  
    27 陈思佳,章定国,洪嘉振. 大变形旋转柔性梁的一种高次刚柔耦合动力学模型. 力学学报,2013,45(2): 251-256 (Chen Sijia, Zhang Dingguo, Hong Jiazhen. A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 251-256 (in Chinese))
    28 范纪华,章定国. 旋转悬臂梁动力学的B 样条差值方法. 机械工程学报,2012,48(23): 59-64 (Fan Jihua, Zhang Dingguo. Bspline interpolation method for the dynamics of rotating cantilever beam. Journal of Mechanical Engineering , 2012, 48(23): 59-64 (in Chinese))
    29 范纪华,章定国. 旋转柔性悬臂梁动力学的Bezier 插值离散方法研究. 物理学报,2014,63(15): 154501 (Fan Jihua, Zhang Dingguo. Bezier interpolation method for the dynamics of rotating flexible cantilever beam. Acta Physica Sinica, 2014, 63(15): 154501 (in Chinese))
    30 杜超凡,章定国,洪嘉振. 径向基点插值法在旋转柔性梁动力学中的应用. 力学学报,2015,47(2): 279-88 (Du Chaofan, Zhang Dingguo, Hong Jiazhen. A meshfree method based on radial point interpolation method for the dynamic analysis of rotating flexible beams. Chinese Journal of Theoretical and Applied Mechanics,2015, 47(2): 279-288 (in Chinese))
    31 李彬,刘锦阳. 大变形柔性梁系统的绝对坐标方法. 上海交通大学学报,2005,39(5): 827-831 (Li Bin, Liu Jingyang. Application of absolute nodal coordination formulation in flexible beams with large deformation. Journal of Shanghai Jiaotong University, 2005,39(5): 827-831 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1175
  • HTML全文浏览量:  145
  • PDF下载量:  1016
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-21
  • 修回日期:  2016-03-07
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回