EI、Scopus 收录
中文核心期刊

半晶态聚合物拉伸变形的微观机理

段芳莉, 金义矿, 颜世铛

段芳莉, 金义矿, 颜世铛. 半晶态聚合物拉伸变形的微观机理[J]. 力学学报, 2016, 48(2): 369-377. DOI: 10.6052/0459-1879-15-345
引用本文: 段芳莉, 金义矿, 颜世铛. 半晶态聚合物拉伸变形的微观机理[J]. 力学学报, 2016, 48(2): 369-377. DOI: 10.6052/0459-1879-15-345
Duan Fangli, Jin Yikuang, Yan Shidang. MICROSTRUCTURE EVOLUTION DURING TENSION DEFORMATION OF SEMI-CRYSTALLINE POLYMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 369-377. DOI: 10.6052/0459-1879-15-345
Citation: Duan Fangli, Jin Yikuang, Yan Shidang. MICROSTRUCTURE EVOLUTION DURING TENSION DEFORMATION OF SEMI-CRYSTALLINE POLYMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 369-377. DOI: 10.6052/0459-1879-15-345
段芳莉, 金义矿, 颜世铛. 半晶态聚合物拉伸变形的微观机理[J]. 力学学报, 2016, 48(2): 369-377. CSTR: 32045.14.0459-1879-15-345
引用本文: 段芳莉, 金义矿, 颜世铛. 半晶态聚合物拉伸变形的微观机理[J]. 力学学报, 2016, 48(2): 369-377. CSTR: 32045.14.0459-1879-15-345
Duan Fangli, Jin Yikuang, Yan Shidang. MICROSTRUCTURE EVOLUTION DURING TENSION DEFORMATION OF SEMI-CRYSTALLINE POLYMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 369-377. CSTR: 32045.14.0459-1879-15-345
Citation: Duan Fangli, Jin Yikuang, Yan Shidang. MICROSTRUCTURE EVOLUTION DURING TENSION DEFORMATION OF SEMI-CRYSTALLINE POLYMER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 369-377. CSTR: 32045.14.0459-1879-15-345

半晶态聚合物拉伸变形的微观机理

基金项目: 中央高校基本科研业务费(CDJZR12248801)和重庆大学机械传动国家重点实验室科研业务费(SKLMT-ZZKT-2012 MS 18)资助项目.
详细信息
    通讯作者:

    段芳莉,副教授,主要研究方向:高分子材料的分子模拟研究.E-mail:flduan@cqu.edu.cn

  • 中图分类号: O631

MICROSTRUCTURE EVOLUTION DURING TENSION DEFORMATION OF SEMI-CRYSTALLINE POLYMER

  • 摘要: 应用大规模分子动力学方法,采用粗粒化聚乙烯醇模型,模拟了晶区与非晶区随机交杂的半晶态聚合物模型系统,研究了半晶态聚合物在单轴拉伸变形过程中的应力-应变行为和微观结构演变.应力-应变曲线表现出4个典型变形阶段:弹性变形、屈服、应变软化和应变强化.在拉伸变形过程中,主要存在晶区折叠链之间的滑移、晶区破坏、非晶区的解缠结,以及分子链沿拉伸方向重新取向等4种主要的微结构演变形式.在屈服点附近,晶区分子链之间排列紧密程度减小而发生滑移,之后晶区变化需要的应力变小,从而形成应变软化现象.随着应变的增大,经各分子链段协同作用使非晶区分子链的解缠结和重新取向行为扩展到相对宏观尺度,导致拉伸应力增大而形成应变强化现象.
    Abstract: Molecular dynamics simulation with coarse-grained model of polyvinyl alcohol was used to investigate the structure of semicrystalline polymer through melt-cooling process.The relationship between microstructure and macroscopic mechanical behavior was then investigated to reveal the microscopic mechanism of semicrystalline polymer during uniaxial tension.The stress-strain behavior comprised elastic stage, yield stage, strain softening stage and strain hardening stage.Several important structural evolution forms were investigated:reorientation of molecular chains, slipping of PVA molecules in crystalline region, disturbed crystalline region(crystal to amorphous) and disentanglement of PVA molecules in the amorphous region.The stress-strain behaviors in the crystal region and amorphous region were investigated respectively. The stress varied in two regions during uniaxial tension, which mainly caused by various microstructure evolution in different stages.In the elastic stage, the main microstructure evolution was the reorientation of molecular chains.In the strain softening stage, the slipping behavior of folded chains in the crystalline region and the disentanglement of the PVA molecules in the amorphous region were the main structural evolution forms.The stress in the crystal region in this stage was larger than that in the amorphous region, because keeping slipping behavior of folded chains in crystalline region was harder than to deform in the amorphous region.In the strain hardening stage, the deformation of amorphous region was more difficult than crystal slipping, in other words, the disentanglement of PVA molecules need more energy.The stress in this stage increased which mainly led to the mechanical behavior of strain hardening.In conclusion, the coordinated microstructure evolution contributed to macroscopic mechanical behavior during tension in spite of the variation of the main microstructure evolutions in different stages.
  • 1 Yamamoto T. Computer modeling of polymer crystallization toward computer-assisted materials' design. Polymer, 2009, 50(9):1975-1985
    2 Schrauwen BAG, Janssen RPM, Govaert LE, et al. Intrinsic deformation behavior of semicrystalline polymers. Macromolecules, 2004, 37(16):6069-6078
    3 Schrauwen BAG, Von Breemen LCA, Spoelstra AB, et al. Structure deformation and failure of flow-oriented semicrystalline polymers. Macromolecules, 2004, 37(23):8618-8633
    4 Hong K, Rastogi A, Strobl G. Model treatment of tensile deformation of semicrystalline polymers:Static elastic moduli and creep parameters derived for a sample of polyethylene. Macromolecules, 2004, 37(26):10174-10179
    5 Hong K, Rastogi A, Strobl G. A model treating tensile deformation of semicrystalline polymers:Quasi-static stress-strain relationship and viscous stress determined for a sample of polyethylene. Macromolecules, 2004, 37(26):10165-10173
    6 Cheng JJ, Alvarado-Contreras JA, Polak MA, et al. Chain entanglements and mechanical behavior of high density polyethylene. Journal of Engineering Materials and Technology, 2010, 132(1):011016
    7 Gsell C, Dahoun A. Evolution of microstructure in semicrystalline polymers under large plastic deformation. Materials Science and Engineering A, 1994, 175(1-2):183-199
    8 Bassett DC. On moire patterns in electron microscopy of polymer crystals. Philosophical Magazine, 1964, 10(106):595
    9 Lustiger A, Lotz B, Duff TS. The morphology of the spherulitic surface in polyethylene. Journal of Polymer Science Part B:Polymer Physics, 1989, 27(3):561-579
    10 Dicorleto JA, Bassett DC. On circular crystals of polyethylene. Polymer, 1990, 31(10):1971-1977
    11 Bartczak Z. Effect of chain entanglements on plastic deformation behavior of linear polyethylene. Macromolecules, 2005, 38(18):7702-7713
    12 Meyer H, Muller-Plathe F. Formation of chain-folded structures in supercooled polymer melts examined by md simulations. Macromolecules, 2002, 35(4):1241-1252
    13 Vettorel T, Meyer H, Baschnagel J, et al. Structural properties of crystallizable polymer melts:Intrachain and interchain correlation functions. Physical Review E, 2007, 75(4):041801
    14 Yamamoto T. Molecular dynamics modeling of polymer crystallization from the melt. Polymer, 2004, 45(4):1357-1364
    15 Yamamoto T. Molecular dynamics simulations of steady-state crystal growth and homogeneous nucleation in polyethylene-like polymer. Journal of Chemical Physics, 2008, 129(18):184903
    16 Gee RH, Lacevic N, Fried LE. Atomistic simulation of polymer crystallization at realistic length scales. Nature Materials, 2005, 5(1):39-43
    17 Monasse B, Queyroy S, Lhost O. Molecular dynamics prediction of elastic and plastic deformation of semi-crystalline polyethylene. International Journal of Material Forming, 2008, 1:1111-1114
    18 Lee S, Rutledge GC. Plastic deformation of semicrystalline polyethylene by molecular simulation. Macromolecules, 2011, 44(8):3096-3108
    19 Queyroy S, Monasse B. Molecular dynamics prediction of elastic and plastic deformation of semicrystalline polyethylene. International Journal for Multiscale Computational Engineering, 2011, 9(1):119-136
    20 Queyroy S, Monasse B. Effect of the molecular structure of semicrystalline polyethylene on mechanical properties studied by molecular dynamics. Journal of Applied Polymer Science, 2012, 125(6):4358-4367
    21 Reith D, Meyer H, Muller-Plathe F. Mapping atomistic to coarsegrained polymer models using automatic simplex optimization to fit structural properties. Macromolecules, 2001, 34(7):2335-2345
    22 Hsu DD, Xia WJ, Arturo SG, et al. Thermomechanically consistent and temperature transferable coarse-graining of atactic polystyrene. Macromolecules, 2015, 48(9):3057-3068
    23 Meyer H, Muller-Plathe F. Formation of chain-folded structures in supercooled polymer melts. Journal of Chemical Physics, 2001, 115(17):7807-7810
    24 Vettorel T, Meyer H. Coarse graining of short polythylene chains for studying polymer crystallization. Journal of Chemical Theory and Computation, 2006, 2(3):616-629
    25 Vettorel T, Meyer H, Baschnagel J, et al. Structural properties of crystallizable polymer melts:Intrachain and interchain correlation functions. Physical Review E, 2007, 75(4):041801
    26 Sommer JU, Luo C. Molecular dynamics simulations of semicrystalline polymers:Crystallization, melting, and reorganization. Journal of Polymer Science Part B:Polymer Physics, 2010, 48(21):2222-2232
    27 段芳莉, 颜世铛. 半晶态聚合物的分子动力学模拟. 计算物理, 2012, 29(5):759-765(Duan Fangli, Yan Shidang. Molecular dynamics simulation of semicrystalline polymers. Chinese Journal of Computational Physics, 2012, 29(5):759-765(in Chinese))
    28 段芳莉, 王源. 单个纳米粒子对聚合物结晶行为的影响. 物理学报, 2014, 63(13):281-288(Duan Fangli, Wang Yuan. Effect of single nanoparticle on the polymer crystallization behavior. Acta Physica Sinica, 2014, 63(13):281-288(in Chinese))
    29 Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1):1-19
    30 何曼君, 张红东, 陈维孝等. 高分子物理. 上海:复旦大学出版社, 2006:159-161(He Manjun, Zhang Hongdong, Chen Weixiao, et al. Polymer Physics. Shanghai:Fudan University Press, 2006:159-160(in Chinese))
    31 Gee RH, Lacevic N, Fried LE. Atomistic simulations of spinodal phase separation preceding polymer crystallization. Nature Materials, 2006, 5(1):39-43
    32 Zhu YJ,Wang HY, Zhu JH, et al. Nanoindentation and thermal study of polyvinylalcohol/graphene oxide nanocomposite film through organic/inorganic assembly. Applied Surface Science, 2015, 349:27-34
    33 Zhao X, Zhang QH, Chen DJ, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules, 2010, 43(5):2357-2363
    34 Li YQ, Yang TY, Yu T, et al. Synergistic effect of hybrid carbon nantube-graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. Journal of Materials Chemistry, 2011, 21(29):10844-10851
    35 Dong X, McDowell DL, Kalidindi SR, et al. Dependence of mechanical properties on crystal orientation of semi-crystalline polyethylene structures. Polymer, 2014, 55(16):4248-4257
    36 Yashiro K, Ito T, Tomita Y. Molecular dynamics simulation of deformation behavior in amorphous polymer:Nucleation of chain entanglements and network structure under uniaxial tension. International Journal of Mechanical Sciences, 2003, 45(11):1863-1876
    37 Huang L, Yang XP, Jia XL, et al. Fracture mechanism of amorphous polymers at strain fields. Physical Chemistry Chemical Physics, 2014, 16(45):24892-24898
    38 Hossain D, Tschopp MA, Ward DK, et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer, 2010, 51(25):6071-6083
    39 Lavine MS, Waheed N, Rutledge GC. Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension. Polymer, 2003, 44(5):1771-1779
  • 期刊类型引用(10)

    1. 华军,黄磊,杨亚东,邢小茹,朱正洪. CPCs泡沫微结构仿生构筑及其压缩力学性能研究. 固体力学学报. 2024(05): 665-678 . 百度学术
    2. 熊祖江. 聚己二酸对苯二甲酸丁二酯泡沫泡孔结构和性能研究. 中国皮革. 2023(01): 98-104 . 百度学术
    3. 郭豪,贾非,陈琰霏,塔力哈特·吾拉孜别克,尹宗琦,孙东磊. 应变速率对硬质聚氨酯准静态拉伸行为的影响. 材料导报. 2022(05): 216-219 . 百度学术
    4. 黄雪梅,柳和生,黄兴元,余忠,江诗雨. U型件的气体辅助挤出成型工艺的数值模拟与实验研究. 中国塑料. 2022(07): 93-103 . 百度学术
    5. 陈素文,陆钰佳,邵筱. 考虑温度和加载影响的离子型中间膜拉伸力学性能. 同济大学学报(自然科学版). 2021(09): 1265-1274 . 百度学术
    6. 余晨. 对PA12尼龙粉体的析出行为研究. 安徽化工. 2020(02): 61-63+66 . 百度学术
    7. 姚进,毛龙,刘小超,李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料. 材料导报. 2019(S2): 617-622+642 . 百度学术
    8. 刘晶如,郭惠铭,俞强. 高分子物理教学中关于链段概念的讲解. 高师理科学刊. 2018(03): 99-102 . 百度学术
    9. 陈俊岐,赵洪,胥智勇,张城城,雷建设. 紫外光交联线性低密度聚乙烯水树老化特性研究. 中国电机工程学报. 2018(07): 2188-2197+2234 . 百度学术
    10. 刘群,钟蔚华,张勇,伊阳,于俊荣,王彦,诸静,胡祖明. 过氧化物交联超高分子量聚乙烯的结构与性能. 工程塑料应用. 2018(11): 48-52+57 . 百度学术

    其他类型引用(24)

计量
  • 文章访问数:  1190
  • HTML全文浏览量:  144
  • PDF下载量:  1145
  • 被引次数: 34
出版历程
  • 收稿日期:  2015-09-13
  • 修回日期:  2015-12-20
  • 刊出日期:  2016-03-17

目录

    /

    返回文章
    返回