EI、Scopus 收录
中文核心期刊

海上浮油定位浮标的力学分析与尺寸优化

赵海峰, 石俊, 王斌斌

赵海峰, 石俊, 王斌斌. 海上浮油定位浮标的力学分析与尺寸优化[J]. 力学学报, 2016, 48(1): 235-242. DOI: 10.6052/0459-1879-15-147
引用本文: 赵海峰, 石俊, 王斌斌. 海上浮油定位浮标的力学分析与尺寸优化[J]. 力学学报, 2016, 48(1): 235-242. DOI: 10.6052/0459-1879-15-147
Zhao Haifeng, Shi Jun, Wang Binbiny. MECHANICAL ANALYSIS AND SIZING OPTIMIZATION OF OFFSHORE OIL SLICK TRACKING BUOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 235-242. DOI: 10.6052/0459-1879-15-147
Citation: Zhao Haifeng, Shi Jun, Wang Binbiny. MECHANICAL ANALYSIS AND SIZING OPTIMIZATION OF OFFSHORE OIL SLICK TRACKING BUOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 235-242. DOI: 10.6052/0459-1879-15-147
赵海峰, 石俊, 王斌斌. 海上浮油定位浮标的力学分析与尺寸优化[J]. 力学学报, 2016, 48(1): 235-242. CSTR: 32045.14.0459-1879-15-147
引用本文: 赵海峰, 石俊, 王斌斌. 海上浮油定位浮标的力学分析与尺寸优化[J]. 力学学报, 2016, 48(1): 235-242. CSTR: 32045.14.0459-1879-15-147
Zhao Haifeng, Shi Jun, Wang Binbiny. MECHANICAL ANALYSIS AND SIZING OPTIMIZATION OF OFFSHORE OIL SLICK TRACKING BUOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 235-242. CSTR: 32045.14.0459-1879-15-147
Citation: Zhao Haifeng, Shi Jun, Wang Binbiny. MECHANICAL ANALYSIS AND SIZING OPTIMIZATION OF OFFSHORE OIL SLICK TRACKING BUOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 235-242. CSTR: 32045.14.0459-1879-15-147

海上浮油定位浮标的力学分析与尺寸优化

基金项目: 中国石油大学(北京)科研基金资助项目(ZX20150191).
详细信息
    通讯作者:

    赵海峰,副教授,主要研究方向:岩石力学与海洋工程力学.E-mail:zhaohf@cup.edu.cn.

  • 中图分类号: O39

MECHANICAL ANALYSIS AND SIZING OPTIMIZATION OF OFFSHORE OIL SLICK TRACKING BUOY

  • 摘要: 海面发生原油泄漏后,采用海上浮油跟踪定位浮标锁定油污飘逸轨迹,实现对溢油的跟踪定位. 定位浮标的定位能力受到浮标内部的吸油材料对原油的吸附能力以及海洋风的影响,吸附能力越强则定位浮标与油污结合越紧密,定位效果越好. 首先,从吸油材料受力分析出发,通过室内实验,采用杠杆放大原理对吸油材料受到的风载荷进行测量,并研究风载荷随着吸油圆盘直径的变化趋势,得到了风载荷随着圆盘直径的增大呈线性增大;对吸油材料受到的黏附力随着吸油圆盘直径的变化趋势进行研究,表明黏附力与圆盘直径呈二次方程关系,随着圆盘直径的增大,黏附力会急剧增大. 其次,对黏附力的组成进行分析,研究认为黏附力由分子间作用力、液体表面张力及剪切黏性力组成,对这3 种作用力的大小进行测量计算对比,发现分子间作用力为主要作用力,液体表面张力及剪切黏性力比分子间作用力低1~2 个数量级. 最后,基于浮标正常工作时黏附力应该大于风载荷的原则,将实验得到的风载荷和黏附力随着圆盘直径变化规律推广到大风速和大圆盘直径下,研究了恶劣海况条件下圆盘直径变化对浮标受力的影响,得到了适应恶劣海况条件的圆盘最小直径为38 cm.
    Abstract: O shore oil slick tracking buoy can be used to lock and locate oil trajectory when oil spill occurs. The adsorption capacity of oil-absorbing material inside buoy and the ocean winds has a great influence on positioning capability of buoy. The stronger adsorption capacity, the more closely integrated with oil and better positioned. First, from the analysis of oil- absorbing material stress, this paper measures the wind load of oil- absorbing material by using the principle of lever amplification in laboratory, and studies the variation trend of wind load along with disc diameter. The result is that wind load increases linearly along with increasing disc diameter. The study on adhesion of material along with increasing disc diameter indicates that adhesion has quadratic relations with the disc diameter. With the increase of disc diameter, the adhesion increases sharply. Second, studies suggest that adhesion should be composed of intermolecular force, surface tension and viscosity shear force. Intermolecular force is the main force, and surface tension and viscosity shear force is less than intermolecular forces from 1 to 2 orders of magnitude. Finally, based on the principle that adhesion force should be stronger than wind loads when buoy is working properly, the law of wind and adhesion force along with increasing disc diameter based on the experiment is extended to the large wind speed and large disc diameter. This paper studied the influence on changing diameter on force state of disc under bad sea conditions. The result is that the minimum disc diameter, adapted to the harsh sea conditions, is 38 cm.
  • 1 陈涛. 美国海洋溢油事件的社会学研究. 中国农业大学学报(社 会科学版),2012,02:110-117 (Chen Tao. Sociological study on American oil spill event. China Agricultural University Journal of Social Sciences Edition, 2012, 02: 110-117 (in Chinese))
    2 Gill DA, Picou JS, Ritchie LA. The exxon valdez and BP oil spills: A comparison of initial social and psycho-logical impacts. American Behavioral Scientist, 2012, 56(1): 3-23
    3 李京梅,侯怀洲,姚海燕.基于资源等价分析法的海洋溢油生物 资源损害评估.生态学报,2014,34(13):3762-3770 (Li Jinmei, Hou Huaizhou, Yao Haiyan. Marine biological damage assessment of oil spill based on resources equivalency analysis. Acta Ecologica Sinica, 2014, 34(13): 3762-3770 (in Chinese))
    4 杨瑞,顾群,王玉林. 水上溢油应急装备跟踪定位浮标关键技术 研究. 中国海事,2014,04:51-53 (Yang Rui, Gu Qun,Wang Yulin. Research on the key technology of tracking location buoy of the marine oil spill emergency equipment. China Marine, 2014, 04: 51-53 (in Chinese))
    5 Hurford N. The use of a satellite-tracked buoy to monitor the movement of an oil slick at sea. Oil and Chemical Pollution, 1990: 6(2):101-112
    6 杨瑞, 顾群. 基于北斗卫星的溢油跟踪浮标. 上海海事大学学报,2014, 03: 23-27 (Yang Rui, Gu Qun. Spilled oil tracking buoys based on Beidou satellites. Journal of Shanghai Maritime University,2014, 03: 23-27 (in Chinese))
    7 彭丽,刘昌见,刘百军. 天然有机纤维吸油材料的研究进展. 化工 进展,2014,02:405-411 (Peng Li, Liu Changjian, Liu Baijun. Research progress of natural organic fibers for oil absorption material. Chemical Industry and Engineering Progress, 2014, 02: 405-411 (in Chinese))
    8 Ceylan D, Dogu S, Karacik B, et al. Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ Sci Technol,2009, 43(10):3846-3852
    9 Wang JT, Zheng Y, Wang AQ. Coated kopak fiber for removal of spilled oil. Marine Pollution Bulletin, 2013, 69: 91-96
    10 岳晓瑞,徐海祥,罗薇. 海洋工程结构物风载荷计算方法比较. 武 汉理工大学学报(交通科学与工程版),2011,03:453-456 (Yue Xiaorui, Xu Haixiang, Luo Wei. Comparison of wind load calculation methods for marine engineering structures. Journal of Wuhan University of Technology, 2011, 03: 453-456 (in Chinese))
    11 Haddara MR. Wind loads on marine structures. Marine Structures,1999, (12): 199-209
    12 OCIMF. Prediction of wind and current loads on VLCCs. Oil Companies International Marine Forum, 1994
    13 张相庭. 结构风压和风振计算. 上海:同济大学出版社,1985:4-5 (Zhang Xiangting. Calculation of Structural Wind Pressure and Vibration. Shanghai: Tongji University Press,1985: 4-5 (in Chinese))
    14 Nyi Nyi Aung, Ye Jihong. Coherence of wind pressure on domes. Journal of Southeast University, 2010, 26(1): 100-106
    15 Fay JA. Oil on the Sea. New York: Plenum Press, 1969: 53-63
    16 赵亚溥. 纳米与介观力学. 北京:科学出版社,2014:342-351 (Zhao Yapu. Nano and Mesoscopic Mechanics. Beijing: Science Press, 2014: 342-351 (in Chinese))
    17 卿涛, 邵天敏, 温诗铸. 相对湿度对材料表明粘附力影响的研究. 摩擦学学报, 2006, 26(4): 295-299 (Qing Tao, Shao Tianmin, Wen Shizhu. E ects of relative humidity on surface adhesion. Tribology,2006, 26(4): 295-299 (in Chinese))
    18 Patton ST, Eapen KC, Zabinski JS. E ect of adsorbed water and sample aging in air on the 1N lever adhesion force between Si(100) and silicon nitride. Tribology International, 2001, 34: 481-491
    19 赵亚溥. 表面与界面物理力学. 北京:科学出版社,2012:40-77 (Zhao Yapu. Surface and Interface Physics Mechanics. Beijing: Science Press, 2012: 40-77 (in Chinese))
    20 李发胜. 有机化学. 北京: 科学出版社, 2012: 8-9 (Li Fasheng. Organic Chemistry. Beijing: Science Press, 2012: 8-9 (in Chinese))
    21 黄志宇,张太亮,鲁红升. 表面及胶体化学. 北京:石油工业出 版社, 2012:1-4 (Huang Zhiyu, Zhang Tailiang, Lu Hongsheng. Surface and Colloid Chemistry. Beijing: Petroleum Industry Press,2012: 1-4 (in Chinese))
    22 尹东霞, 马沛生, 夏淑倩. 液体表面张力测定方法的研究进展. 科 技通报, 2007, 23(3): 424-429,433 (Yin Dongxia, Ma Peisheng, Xia Shuqian. Progress on methods for measuring surface tension of liquids. Bulletin of Science and Technology, 2007, 23(3): 424-429,433 (in Chinese))
    23 Paddy JF, Pitt AR, Pashley RM. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J Chem Soc Faraday Trans, 1975, 71: 1919-1931
    24 张远君. 流体力学大全. 北京:北京航空航天大学出版社,1991:226-228 (Zhang Yuanjun. Hydrodynamics. Beijing: Beijing University of Aeronautics and Astronautics Press, 1991: 226-228 (in Chinese))
    25 邓邵云. 桩基绕流阻力特性研究现状与展望. 水运工程,2006,1:10-15 (Deng Shaoyun. Current situation and prospect of study on drag force characteristics of piles. Port & Waterway Engineering,2006, 1: 10-15 (in Chinese))
    26 徐远杰, 康欢, 楚锡华. 漂浮物对流体拖曳力系数影响的试验研 究. 中国力学大会论文集, 2011. 1-9 (Xu Yuanjie, Kang Huan, Chu Xihua. Influence of floating-debris on fluid drag force using experimental investigation. In: Chinese Mechanical Assembly, 2011. 1-9 (in Chinese))
    27 陈志清. 河道输沙学导论. 徐氏基金会, 1977, 1: 11-12 (Chen Zhiqing. Introduction to sediment transport in river. Xu Foundation,1977, 1: 11-12 (in Chinese))
    28 王敏,魏根宝,马锦国. 二等皮托管测风误差分析及偏差模拟计 算. 气象科技,2013,05:843-846,851 (Wang Min, Wei Genbao, Ma Jinguo. Measurement error analysis and deviation simulation of second-class pitot tube. Meteorological Science and Technology,2013, 05: 843-846,851 (in Chinese))
    29 李涛, 樊荣. 皮托管在瓦斯抽放煤层气输送计量中的应用. 自动 化仪表, 2015, 01: 95-98 (Li Tao, Fan Rong. Application of pitot tube in transport metering of coalbed methane gas drainage. Process Automation Instrumentation, 2015, 01: 95-98 (in Chinese))
    30 王晓蕾, 沈建华, 张玉存. 皮托管风速测量不确定度的分析与评 定. 计量技术, 2003, 9: 53-54 (Wang Xiaolei, Shenjianhua, Zhang Yucun. Analysis and evaluation of pitot tube wind speed measurement uncertainty. Measurement Technology, 2003, (9): 53-54 (in Chinese))
    31 王家禄. 油藏物理模拟. 北京:石油工业出版社, 2010. 35 (Wang Jialu. Reservoir Physical Simulation. Beijing: Petroleum Industry Press, 2010. 35 (in Chinese))
  • 期刊类型引用(1)

    1. 张鹏,张彦如,张福建,刘珍,张忠强. 纳米限域Couette流边界气泡减阻机理. 物理学报. 2024(15): 93-102 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1086
  • HTML全文浏览量:  89
  • PDF下载量:  648
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-04-26
  • 修回日期:  2015-07-27
  • 刊出日期:  2016-01-17

目录

    /

    返回文章
    返回