Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part I — analytical studies. International Journal of Impact Engineering, 2000, 24(9): 957-973
|
Karagiozova D, Langdon GS, Nurick GN. Blast attenuation in Cymat foam core sacrificial claddings. International of Journal of Mechanical Sciences, 2010, 52(5): 758-776
|
Liu YD, Yu JL, Zheng ZJ, et al. A numerical study on the rate sensitivity of cellular metal. International Journal of Solids and Structures, 2009, 46 (22-23): 3988-3998
|
Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19(5-6): 531-570
|
Harrigan JJ, Reid SR, Peng C. Inertia effects in impact energy absorbing materials and structures. International Journal of Impact Engineering, 1999, 22(9-10): 955-979
|
Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅱ — 'shock' theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230
|
Harrigan JJ, Reid SR, Tan PJ, et al. High rate crushing of wood along the grain. International of Journal of Mechanical Sciences, 2005, 47(4-5): 521- 544
|
Zheng ZJ, Liu YD, Yu JL, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes. International Journal of Impact Engineering, 2012, 42: 66-79
|
Wang LL, Yang LM, Ding YY. On the energy conservation and critical velocities for the propagation of a "steady-shock" wave in a bar of cellular material. Acta Mechanica Sinica, 2013, 29(3): 420-428
|
Zheng ZJ, Yu JL, Wang CF, et al. Dynamic crushing of cellular materials: A unified framework of plastic shock wave model. International Journal of Impact Engineering, 2013, 53: 29-43
|
Wang LL, Ding YY, Yang LM. Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements. International Journal of Impact Engineering, 2013, 62: 48-59
|
Cooper GJ, Townend DJ, Cater SR, et al. The role of stress waves in thoracic visceral injury from blast loading: Modification of stress transmission by foams and high-density materials. Journal of Biomechanics, 1991, 24(5): 273-285
|
Ben-Dor G, Mazor G, Igra O, et al. Shock wave interaction with cellular materials. Part Ⅱ: open cell foams; experimental and numerical results. Shock Waves,1994, 3: 167-179
|
Li QM, Meng H. Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering, 2002, 27(10): 1049-1065
|
Harrigan JJ, Reid SR, Seyed Yaghoubi A. The correct analysis of shocks in a cellular material. International Journal of Impact Engineering, 2010, 37(8): 918-927
|
Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 2002, 27(6): 593-618
|
Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast alleviation. International Journal of Impact Engineering, 2007, 34(2): 329-347.
|
Liao SF, Zheng ZJ, Yu JL, et al. A design guide of double-layer cellular claddings for blast alleviation. International Journal of Aerospace and Lightweight Structures, 2013, 3(1): 109-133.
|
Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge, UK. 1997
|
Zheng ZJ, Wang CF, Yu JL, et al. Dynamic stress-strain states for metal foams using a 3D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114
|
王长峰, 郑志军, 虞吉林. 泡沫杆撞击刚性壁的动态压溃模型. 爆炸与冲击, 2013, 33(6): 587-593. (Wang Changfeng, Zheng Zhijun, Yu Jilin. Dynamic crushing models for a foam rod striking a rigid wall. Explosion and Shock Waves, 2013, 33(6): 587-593 (in Chinese))
|