EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多胞牺牲层的抗爆炸分析

丁圆圆 王士龙 郑志军 杨黎明 虞吉林

丁圆圆, 王士龙, 郑志军, 杨黎明, 虞吉林. 多胞牺牲层的抗爆炸分析[J]. 力学学报, 2014, 46(6): 825-833. doi: 10.6052/0459-1879-14-187
引用本文: 丁圆圆, 王士龙, 郑志军, 杨黎明, 虞吉林. 多胞牺牲层的抗爆炸分析[J]. 力学学报, 2014, 46(6): 825-833. doi: 10.6052/0459-1879-14-187
Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yang Liming, Yu Jilin. ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833. doi: 10.6052/0459-1879-14-187
Citation: Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yang Liming, Yu Jilin. ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833. doi: 10.6052/0459-1879-14-187

多胞牺牲层的抗爆炸分析

doi: 10.6052/0459-1879-14-187
基金项目: 国家自然科学基金资助项目(11372308,90916026).
详细信息
    作者简介:

    虞吉林,教授,主要研究方向:冲击动力学,材料力学行为和设计.

  • 中图分类号: O389

ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING

Funds: The project was supported by the National Natural Science Foundation of China (11372308, 90916026).
  • 摘要: 运用一维冲击波模型和三维细观有限元模型分析了多胞牺牲层的抗爆炸行为. 基于刚性-塑性硬化(R-PH)的多胞材料模型,建立了一维冲击波模型,得到了多胞牺牲层中冲击波传播的控制方程. 揭示了冲击波在多胞牺牲层中的传播特性,并阐述了附加质量和爆炸载荷强度两个参数对牺牲层设计的重要影响. 比较了基于刚性-理想塑性-锁定(R-PP-L) 模型和基于刚性-塑性硬化(R-PH) 模型的多胞牺牲层的结构设计,指出了两种模型的适用范围. 通过基于三维Voronoi 技术的细观有限元方法验证了基于R-PH 模型的多胞牺牲层结构的设计准则.

     

  • Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part I — analytical studies. International Journal of Impact Engineering, 2000, 24(9): 957-973  
    Karagiozova D, Langdon GS, Nurick GN. Blast attenuation in Cymat foam core sacrificial claddings. International of Journal of Mechanical Sciences, 2010, 52(5): 758-776  
    Liu YD, Yu JL, Zheng ZJ, et al. A numerical study on the rate sensitivity of cellular metal. International Journal of Solids and Structures, 2009, 46 (22-23): 3988-3998
    Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19(5-6): 531-570
    Harrigan JJ, Reid SR, Peng C. Inertia effects in impact energy absorbing materials and structures. International Journal of Impact Engineering, 1999, 22(9-10): 955-979
    Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅱ — 'shock' theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230  
    Harrigan JJ, Reid SR, Tan PJ, et al. High rate crushing of wood along the grain. International of Journal of Mechanical Sciences, 2005, 47(4-5): 521- 544
    Zheng ZJ, Liu YD, Yu JL, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes. International Journal of Impact Engineering, 2012, 42: 66-79  
    Wang LL, Yang LM, Ding YY. On the energy conservation and critical velocities for the propagation of a "steady-shock" wave in a bar of cellular material. Acta Mechanica Sinica, 2013, 29(3): 420-428  
    Zheng ZJ, Yu JL, Wang CF, et al. Dynamic crushing of cellular materials: A unified framework of plastic shock wave model. International Journal of Impact Engineering, 2013, 53: 29-43  
    Wang LL, Ding YY, Yang LM. Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements. International Journal of Impact Engineering, 2013, 62: 48-59  
    Cooper GJ, Townend DJ, Cater SR, et al. The role of stress waves in thoracic visceral injury from blast loading: Modification of stress transmission by foams and high-density materials. Journal of Biomechanics, 1991, 24(5): 273-285  
    Ben-Dor G, Mazor G, Igra O, et al. Shock wave interaction with cellular materials. Part Ⅱ: open cell foams; experimental and numerical results. Shock Waves,1994, 3: 167-179  
    Li QM, Meng H. Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering, 2002, 27(10): 1049-1065  
    Harrigan JJ, Reid SR, Seyed Yaghoubi A. The correct analysis of shocks in a cellular material. International Journal of Impact Engineering, 2010, 37(8): 918-927  
    Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 2002, 27(6): 593-618  
    Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast alleviation. International Journal of Impact Engineering, 2007, 34(2): 329-347.  
    Liao SF, Zheng ZJ, Yu JL, et al. A design guide of double-layer cellular claddings for blast alleviation. International Journal of Aerospace and Lightweight Structures, 2013, 3(1): 109-133.
    Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge, UK. 1997
    Zheng ZJ, Wang CF, Yu JL, et al. Dynamic stress-strain states for metal foams using a 3D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114  
    王长峰, 郑志军, 虞吉林. 泡沫杆撞击刚性壁的动态压溃模型. 爆炸与冲击, 2013, 33(6): 587-593. (Wang Changfeng, Zheng Zhijun, Yu Jilin. Dynamic crushing models for a foam rod striking a rigid wall. Explosion and Shock Waves, 2013, 33(6): 587-593 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1550
  • HTML全文浏览量:  59
  • PDF下载量:  1259
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-09-12
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回