EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内参型四边形四节点拟协调平面单元

王长生 齐朝晖 张向奎 胡平

王长生, 齐朝晖, 张向奎, 胡平. 内参型四边形四节点拟协调平面单元[J]. 力学学报, 2014, 46(6): 971-976. doi: 10.6052/0459-1879-14-167
引用本文: 王长生, 齐朝晖, 张向奎, 胡平. 内参型四边形四节点拟协调平面单元[J]. 力学学报, 2014, 46(6): 971-976. doi: 10.6052/0459-1879-14-167
Wang Changsheng, Qi Zhaohui, Zhang Xiangkui, Hu Ping. QUADRILATERAL 4-NODE QUASI-CONFORMING PLANE ELEMENT WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 971-976. doi: 10.6052/0459-1879-14-167
Citation: Wang Changsheng, Qi Zhaohui, Zhang Xiangkui, Hu Ping. QUADRILATERAL 4-NODE QUASI-CONFORMING PLANE ELEMENT WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 971-976. doi: 10.6052/0459-1879-14-167

内参型四边形四节点拟协调平面单元

doi: 10.6052/0459-1879-14-167
基金项目: 中央高校基本科研业务费专项资金(3013-852020),国家自然科学基金(10932003,11272075,11301052,11301045),"863"(2009AA04Z101)和“973”国家重点基础研究发展规划(2010CB832700)资助项目.
详细信息
    作者简介:

    胡平,教授,主要研究方向:车辆工程,固体力学.E-mail:pinghu@dlut.edu.cn

  • 中图分类号: O241.82

QUADRILATERAL 4-NODE QUASI-CONFORMING PLANE ELEMENT WITH INTERNAL PARAMETERS

Funds: The project was supported by the Fundamental Research Funds for the Central Universities (3013-852020), the Key Project of the NSFC (10932003, 11272075,11301052, 11301045), "863" Project of China (2009AA04Z101) and "973" National Basic Research Project of China (2010CB832700).
  • 摘要: 在拟协调框架之下,利用新的内参形函数构造了一个四边形四节点拟协调平面单元. 新的内参位移函数也可以添加到等参单元Q4 中来构造新的内参型等参单元. 新构造的拟协调单元QC6N 具有显式刚度矩阵,因而效率更高. 数值例子表明相比于四节点等参单元,新构造的单元可以提高计算精度和抗网格畸变的能力.

     

  • Wilson EL, Taylor RL, Doherty WP, et al. Incompatible displacement models. In: Fenves SJ, ed. Numerical and Computer Methods in Structural Mechanics. New York: Academic Press, 1973: 43-57
    Strang WG, Fix GJ. An Analysis of the Finite Element Method. New Jersey: Prentice-Hall, 1973
    Taylor RL, Wilson E, Beresford P. A non-conforming element for stress analysis. International Journal for Numerical Methods in Engineering, 1976, 10(6): 1211-1219  
    Chen XM, Cen S, Long YQ, et al. Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Computers & Structures, 2004, 82: 35-54  
    龙驭球,龙志飞,岑松. 新型有限元论. 北京:清华大学出版社,2004 (Long Yuqiu, Long Zhifei, Cen Song. Novel Formulation of Finite Element Method. Beijing: Tsinghua University, 2004 (in Chinese))
    唐立民,陈万吉,刘迎曦. 有限元分析中的拟协调元. 大连工学院学报,1980, 19(2): 19-35 (Tang Limin, Chen Wanji, Liu Yingxi. Quasi-conforming elements for finite element analysis. Journal of Dalian University of Technology, 1980, 19(2): 19-35 (in Chinese))
    Lomboy G, Suthasupradit S, Kim K, et al. Nonlinear formulations of a four-node quasi-conforming shell element. Archives of Computational Methods in Engineering, 2009, 16(2): 189-250  
    胡平,夏阳. 拟协调元研究综述. 力学进展, 2012,42(6): 755-770 (Hu Ping, Xia Yang. Survey of quasi-conforming finite element method. Advances in Mechanics, 2012, 42(6): 755-770 (in Chinese))
    陈万吉, 唐立民. 等参拟协调元. 大连工学院学报, 1981, 20(1): 63-74 (Chen Wanji, Tang Limin. Isoparametric quasi-conforming element. Journal of Dalian University of Technology, 1981, 20(1): 63-74 (in Chinese))
    唐立民,陈万吉,周建清. 多变量拟协调平面四边形元. 计算结构力学及其应用,1988, 5(1): 1-6 (Tang Limin, Chen Wanji, Zhou Jianqing. A multi-variable quasi-conforming quadrilateral element. Computational Structural Mechanics and Applications, 1988, 5(1): 1-6 (in Chinese))
    刘红,唐立民. 带旋转自由度的拟协调平面单元. 计算结构力学及其应用,1990, 7(4): 23-31 (Liu Hong, Tang Limin. Quasi-conforming plane element with drilling degree of freedom. Computatinal Structural Mechanics and Application, 1990, 7(4): 23-31 (in Chinese))
    夏阳,胡平,唐立民. 用拟协调元直接构造平面任意四边形单元—进入有限元的禁区. 力学学报,2012, 44(5): 839-850 (Xia Yang, Hu Ping, Tang Limin. Direct formulation of quadrilateral plane element with quasi-conforming method—Into the forbidden zone of FEM. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 839-850 (in Chinese))
    刘迎曦,石广玉,唐立民. 关于有限元多余零能模式的讨论. 大连工学院学报,1980,19(3): 71-80 (Liu Yingxi, Shi Guangyu, Tang Limin. Discussion on the superfluous zero energy modes of finite elements. Journal of Dalian University of Technology, 1980,19(3): 71-80 (in Chinese))
    石钟慈,王鸣. 有限元方法. 北京:科学出版社,2010 (Shi Zhongci, Wang Ming. The Finite Element Method. Beijing: Science Press, 2010 (in Chinese))
    Lü HX, Xu SN. An effective quadrilateral plate bending element. International Journal for Numerical Methods in Engineering, 1989, 28(5): 1145-1160  
    MacNeal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1985, 1: 3-20  
  • 加载中
计量
  • 文章访问数:  994
  • HTML全文浏览量:  61
  • PDF下载量:  924
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-09
  • 修回日期:  2014-07-21
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回