EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固有耗散的材料疲劳性能快速评估方法

郭强 郭杏林 樊俊铃 侯培军 吴承伟

郭强, 郭杏林, 樊俊铃, 侯培军, 吴承伟. 基于固有耗散的材料疲劳性能快速评估方法[J]. 力学学报, 2014, 46(6): 931-939. doi: 10.6052/0459-1879-14-139
引用本文: 郭强, 郭杏林, 樊俊铃, 侯培军, 吴承伟. 基于固有耗散的材料疲劳性能快速评估方法[J]. 力学学报, 2014, 46(6): 931-939. doi: 10.6052/0459-1879-14-139
Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. doi: 10.6052/0459-1879-14-139
Citation: Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. doi: 10.6052/0459-1879-14-139

基于固有耗散的材料疲劳性能快速评估方法

doi: 10.6052/0459-1879-14-139
基金项目: 国家自然科学基金(11072045)和国家"973计划"(2011CB706504)资助项目.
详细信息
    作者简介:

    郭杏林,教授,主要研究方向:材料性能、振动、无损检测等.E-mail:xlguo@dlut.edu.cn

  • 中图分类号: O346.2

AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION

Funds: The project was supported by the project was supported by the Natural Science Foundation of China (11072045) and the National Basic Research Program of China (2011CB706504).
  • 摘要: 材料疲劳损伤的累积过程是一个伴随着温度变化的能量耗散过程. 相比于疲劳过程中试件的局部温升,固有耗散是材料能量变化的直接反映,与材料微观结构演化联系也更为紧密,因此以材料的固有耗散作为疲劳损伤指标具有更加明确的物理意义. 基于对试件表面温升的一维双指数回归,构建了一种材料固有耗散的计算模型,并在此基础上提出了一种快速评估材料疲劳性能的能量方法. 利用该能量方法,对FV520B 钢的疲劳性能进行了实验研究,并对实验结果进行了分析与对比,从而证明了该能量方法及计算模型的可行性和有效性.

     

  • 郭杏林, 王晓钢. 疲劳热像法研究综述. 力学进展, 2009, 39(2): 217-227 (Guo Xinglin, Wang Xiaogang. Overview on the thermographic method for fatigue research. Advances in Mechanics, 2009, 39(2): 217-227 (in Chinese))
    曾伟, 韩旭, 丁桦等. 基于红外热象技术的金属材料疲劳性能研究方法. 机械强度, 2008, 30(4): 658-663 (Zeng Wei, Han Xu, Ding Hua, et al. Fatigue characteristics evaluation of metals based on infrafed thermographic technique. Journal of Mechanical Strength, 2008, 30(4): 658-663 (in Chinese))
    La Rosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue, 2000, 22(1): 65-73  
    Fargione G, Geraci A, La Rosa G, et al. Rapid determination of the fatigue curve by the thermographic method. International Journal of Fatigue, 2002, 24(1): 11-19  
    Luong M. Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design, 1995, 158(2): 363-376
    Luong MP. Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials, 1998, 28(1): 155-163
    Curá F, Curti G, Sesana R. A new iteration method for the thermographic determination of fatigue limit in steels. International Journal of Fatigue, 2005, 27(4): 453-459  
    Krapez JC, Pacou D. Thermography detection of damage initiation during fatigue tests. In: AeroSense 2002, International Society for Optics and Photonics, 2002. 435-449
    Berthel B, Chrysochoos A, Wattrisse B, et al. Infrared image processing for the calorimetric analysis of fatigue phenomena. Experimental Mechanics, 2008, 48(1): 79-90  
    Berthel B, Wattrisse B, Chrysochoos A, et al. Thermographic analysis of fatigue dissipation properties of steel sheets. Strain, 2007, 43(3): 273-279  
    Chrysochoos A, Louche H. An infrared image processing to analyse the calorific effects accompanying strain localisation. International Journal of Engineering Science, 2000, 38(16): 1759-1788  
    Chrysochoos A, Pham H, Maisonneuve O. Energy balance of thermoelastic martensite transformation under stress. Nuclear Engineering and Design, 1996, 162(1): 1-12  
    Morabito A, Chrysochoos A, Dattoma V, et al. Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. International Journal of Fatigue, 2007, 29(5): 977-984  
    Boulanger T, Chrysochoos A, Mabru C, et al. Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. International Journal of Fatigue, 2004, 26(3): 221-229  
    Connesson N, Maquin F, Pierron F. Dissipated energy measurements as a marker of microstructural evolution: 316L and DP600. Acta Materialia, 2011, 59(10): 4100-4115  
    Connesson N, Maquin F, Pierron F. Experimental energy balance during the first cycles of cyclically loaded specimens under the conventional yield stress. Experimental Mechanics, 2011, 51(1): 23-44  
    Maquin F, Pierron F. Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity. Mechanics of Materials, 2009, 41(8): 928-942  
    Maquin F, Pierron F. Refined experimental methodology for assessing the heat dissipated in cyclically loaded materials at low stress levels. Comptes Rendus Mécanique, 2007, 335(3): 168-174  Comptes Rendus M">
    Meneghetti G. Analysis of the fatigue strength of a stainless steel based on the energy dissipation. International Journal of Fatigue, 2007, 29(1): 81-94  
    Meneghetti G, Ricotta M. The use of the specific heat loss to analyse the low-and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel. Engineering Fracture Mechanics, 2012, 81: 2-16  
    Meneghetti G, Ricotta M, Atzori B. A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(12): 1306-1322  
    Yang B, Liaw P, Morrison M, et al. Temperature evolution during fatigue damage. Intermetallics, 2005, 13(3): 419-428
    Yang B, Liaw P, Wang H, et al. Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Materials Science and Engineering: A, 2001, 314(1): 131-139
    李源, 韩旭, 刘杰等. 一种基于耗散能计算的高周疲劳参数预测方法. 力学学报, 2013, 45(3): 367-374 (Li Yuan, Han Xu, Liu Jie, et al. A prediction method on high-cycle fatigue parameters based on dissipated energy computation. Acta Mechanica Sinica, 2013, 45(3): 367-374 (in Chinese))
    Fan J, Guo X, Wu C. A new application of the infrared thermography for fatigue evaluation and damage assessment. International Journal of Fatigue, 2012, 44: 1-7  
    Fan JL, Guo XL, Wu CW, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints. Materials Science and Engineering: A, 2011, 528(29): 8417-8427
    Crupi V. An unifying approach to assess the structural strength. International Journal of Fatigue, 2008, 30(7): 1150-1159  
    Risitano A, Risitano G. Cumulative damage evaluation of steel using infrared thermography. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 82-90  
    Caillard D, Martin J. Thermally Activated Mechanisms in Crystal Plasticity. Amsterdam: Elserier, 2003.
    Slimani A, Fleischmann P, Fougéres R. Dislocation dynamic in aluminum polycrystals during cyclic plasticity studied by acoustic-emission. Journal de Physique
    Ⅲ, 1992, 2(6): 933-945
  • 加载中
计量
  • 文章访问数:  1239
  • HTML全文浏览量:  65
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-19
  • 修回日期:  2014-07-31
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回