EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

串列双圆柱流致振动的数值模拟及其耦合机制

及春宁 陈威霖 黄继露 徐万海

及春宁, 陈威霖, 黄继露, 徐万海. 串列双圆柱流致振动的数值模拟及其耦合机制[J]. 力学学报, 2014, 46(6): 862-870. doi: 10.6052/0459-1879-14-118
引用本文: 及春宁, 陈威霖, 黄继露, 徐万海. 串列双圆柱流致振动的数值模拟及其耦合机制[J]. 力学学报, 2014, 46(6): 862-870. doi: 10.6052/0459-1879-14-118
Ji Chunning, Chen Weilin, Huang Jilu, Xu Wanhai. NUMERICAL INVESTIGATION ON FLOW-INDUCED VIBRATION OF TWO CYLINDERS IN TANDEM ARRANGEMENTS AND ITS COUPLING MECHANISMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 862-870. doi: 10.6052/0459-1879-14-118
Citation: Ji Chunning, Chen Weilin, Huang Jilu, Xu Wanhai. NUMERICAL INVESTIGATION ON FLOW-INDUCED VIBRATION OF TWO CYLINDERS IN TANDEM ARRANGEMENTS AND ITS COUPLING MECHANISMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 862-870. doi: 10.6052/0459-1879-14-118

串列双圆柱流致振动的数值模拟及其耦合机制

doi: 10.6052/0459-1879-14-118
基金项目: 国家自然科学基金(51321065,50809047,51209162,51479135)和天津市青年科学基金(12JCQNJC02600)资助项目.
详细信息
    作者简介:

    徐万海,副教授,主要研究方向:海洋工程,涡激振动,非线性动力学.

  • 中图分类号: P751;TB531

NUMERICAL INVESTIGATION ON FLOW-INDUCED VIBRATION OF TWO CYLINDERS IN TANDEM ARRANGEMENTS AND ITS COUPLING MECHANISMS

Funds: The project was supported by the National Natural Science Foundation of China (51321065, 50809047, 51209162, 51479135) and Natural Science Foundation of Tianjin (12JCQNJC02600).
  • 摘要: 对雷诺数Re= 100 条件下串列双圆柱的流致振动进行了数值模拟. 圆柱的质量比m*均为2.0,间距比L/D 为2.0 5.0. 考虑两种工况:(a) 上游圆柱固定,下游圆柱可沿横流向自由振动;(b) 上、下游圆柱均可沿横流向自由振动. 结果表明:无论上游圆柱静止或者振动,下游圆柱横向振幅明显大于单圆柱的. 工况(b) 的下游圆柱最大振幅要大于工况(a) 的,这是由于两圆柱均振动时,两圆柱之间耦合作用增强,上游圆柱的尾流和下游圆柱的振动之间“相互调节” 作用显著. 对工况(b) 的下游圆柱振动和间隙流之间的作用机制进行了详细的研究,发现当上游圆柱脱落的自由剪切层重新附着于下游圆柱上并且完全从间隙之间通过时,下游圆柱的振幅最大.

     

  • Sarpkaya T. Vortex-induced oscillations, a selective review. Journal of Applied Mechanics, 1979, 46: 241-258  
    Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 389-447  
    Griffin OM, Ramberg SE. Some recent studies of vortex shedding with application to marine tubulars and risers. Journal of Energy Resources Technology, 1982, 104: 2-13  
    Bearman PW. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 1984, 16: 195-222  
    Bearman PW. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures, 2011, 27: 648-658  
    Williamson CHK, Govardhan R. Vortex-induced vibrations. Annual Review of Fluid Mechanics, 2004, 36: 413-455  
    Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735  
    Gabbai RD, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 2005, 282: 575-616  
    Papaioannoua GV, Yuea DKP, Triantafylloua MS, et al. On the effect of spacing on the vortex-induced vibrations of two tandem cylinders. Journal of Fluids and Structures, 2008, 24: 833-854  
    Zravkovich MM. The effects of flow interference between two circular cylinders in various arrangements. Journal of Fluids and Structures, 1987, 1: 239-261  
    Sumner D. Two circular cylinders in cross-flow: A review. Journal of Fluids and Structures. 2010, 26: 849-899
    Papaioannou GV, Yue DKP, Triantafyllou MS, et al. Three-dimensionality effects in flow around two tandem cylinders. Journal of Fluid Mechanics, 2006, 558: 387-413  
    Xu G, Zhou Y. Strouhal numbers in the wake of two inline cylinders. Experiments in Fluids, 2004, 37: 248-256
    Huhe-Aode H, Tatsuno M, Taneda S. Visual studies of wake structure behind two cylinders in tandem arrangement. Reports of Research Institute for Applied Mechanics (Kyushu University, Japan), 1985, 32 (99): 1-20
    Li J, Chambarel A, Donneaud M, et al. Numerical study of laminar flow past one and two circular cylinders. Computers & Fluids, 1991, 19: 155-170  
    Meneghini JR, Saltara F, Siqueira CLR, et al. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures, 2001, 15: 327-350  
    Sharman B, Lien FS, Davidson L, et al. Numerical prediction of low Reynolds number flows over two tandem circular cylinders. International Journal for Numerical Methods in Fluids, 2005, 47: 423-447  
    Ljungkrona L, Norberg C, Sunden B. Free-stream turbulence and tube spacing effects on surface pressure fluctuations for two tubes in an in-line arrangement. Journal of Fluids and Structures, 1991, 5: 701-727  
    毕继红,任洪鹏,丁代伟等. 串列双圆柱静止绕流的二维数值仿真分析. 工程力学,2012, 29(6):8-11(Bi Jihong, Ren Hongpeng, Ding Daiwei, et al. Two-dimensional numerical simulation of static flow interference between two circular cylinders in tandem. Engineering Mechanics, 2012, 29(6): 8-11(in Chinese))
    赵舟,周少东,袁银男等. 过渡流下管束的流动、传热特性研究一串列双圆柱流场研究. 工程热物理学报,2012,33(12):2194-2196(Zhao Zhou, Zhou Shaodong, Yuan Yinnan, et al. Study on flow and heat transfer characteristics of tubes in transition flow-flow field of tandem cylinders. Journal Of Engineering Thermophysics, 2012, 33(12): 2194-2196(in Chinese))
    于定勇,刘洪超,王昌海. 不等直径串列双圆柱体绕流的数值模拟. 中国海洋大学学报, 2012,42(7-8): 160-165(Yu Dingyong, Liu Hongchao, Wang Changhai. Numerical simulation of viscous flow past two tandem circular cylinders of different diameters. Journal of Ocean University of China, 2012, 42(7-8): 160-165(in Chinese))
    Chen SS. A review of flow-induced vibration of two circular cylinders in crossflow. Journal of Pressure Vessel Technology, 1986, 108: 382-393  
    Assi GRS, Meneghini JR, Aranha JAP, et al. Experimental investigation of flow-induced vibration interference between two circular cylinders. Journal of Fluids and Structures, 2006, 22: 819-827  
    Zdravkovich MM. Flow-induced oscillations of two interfering circular cylinders. Journal of Sound and Vibration, 1985, 101: 511-521  
    Mittal S, Kumar V. Flow-induced oscillations of two cylinders in tandem and staggered arrangements. Journal of Fluids and Structures, 2001, 15: 717-736  
    Prasanth TK, Mittal S. Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re. Journal of Fluids and Structures, 2009, 25: 1029-1048  
    Kim S, Alam MM, Sakamoto H, et al. Flow-induced vibrations of two circular cylinders in tandem arrangement. Part1: Characteristics of vibration. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97: 304-311
    Assi GRS, Bearman PW, Meneghini JR. On the wake-induced vibration of tandem circular cylinders: The vortex interaction excitation mechanism. Journal of Fluid Mechanics, 2010, 661: 365-401  
    Carmo BS, Assi GRS, Meneghini JR. Computational simulation of the flow-induced vibration of a circular cylinder subjected to wake interference. Journal of Fluids and Structures, 2013, 41: 99-108  
    Noca F, Park HG, Gharib M. Vortex formation length of a circular cylinder (300 < Re < 4000) using DPIV. In: Bearman PW, Williamson CHK, eds. Proceedings of Bluff Body Wakes and Vortex-Induced Vibration, ASME Fluids Engineering Division, Washington, DC, 1998, 46
    及春宁,刘爽,杨立红等. 基于嵌入式迭代的高精度浸入边界法. 天津大学学报, 2014, 47(5): 377-382 (Ji Chunning,Liu Shuang,Yang Lihong, et al. An accurate immersed boundary method based on built-in iterations. Journal of Tianjin University, 2014, 47(5): 377-382 (in Chinese))
    Ji C, Munjiza A, Williams JJR. A novel iterative direct-forcing immersed boundary method and its finite volume applications. Journal of Computational Physics, 2012, 231(4): 1797-1821  
    Lai M, Peskin C. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Journal of Computational Physics, 2000, 160: 705-719  
    Liu C, Zheng X, Sung CH. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 1998, 139: 35-57  
    Williamson CHK. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 1989, 206: 579-627  
    Tritton DJ. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 1959, 6(4): 547-567  
    Singh SP, Mittal S. Vortex-induced oscillations at low Reynolds numbers: Hysteresis and vortex-shedding modes. Journal of Fluids and Structures, 2005, 20: 1085-1104  
    Prasanth TK, Behara S, Singh SP, et al. Effect of blockage on vortex-induced vibrations at low Reynolds numbers. Journal of Fluids and Structures, 2006, 22: 865-876  
    Prasanth TK, Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 2008, 594: 463-491
    Carmo BS, Sherwin SJ, Bearman PW, et al. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number. Journal of Fluids and Structures, 2011, 27: 503-522  
    Govardhan RN, Williamson CHK. Defining the 'modified Griffin plot' in vortex-induced vibration: Revealing the effect of Reynolds number using controlled damping. Journal of Fluid Mechanics, 2006, 561: 147-180  
    Prasanth TK, Mittal S. Vortex-induced vibration of two circular cylinders at low Reynolds number. Journal of Fluids and Structures, 2009, 25: 731-741  
    Carmo BS, Sherwin SJ, Bearman PW, et al. Numerical simulation of the flow-induced vibration in the flow around two circular cylinders in tandem arrangements. In: Fifth Conference on Bluff Body Wakes and Vortex-induced Vibrations, Costa do Sauipe, Brazil, 2007
    Borazjani I, Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity--wake interference region. Journal of Fluid Mechanics, 2009, 621: 321-364  
    Haeyoung K. Mechanism of wake galloping of two circular cylinders. Department of Civil Engineering, Nagoya University, Nagoya, Japan, 2009
  • 加载中
计量
  • 文章访问数:  1169
  • HTML全文浏览量:  106
  • PDF下载量:  995
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 修回日期:  2014-07-07
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回