EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通孔金属泡沫渗透率解析模型

杨肖虎 白佳希 卢天健

杨肖虎, 白佳希, 卢天健. 通孔金属泡沫渗透率解析模型[J]. 力学学报, 2014, 46(6): 982-986. doi: 10.6052/0459-1879-14-115
引用本文: 杨肖虎, 白佳希, 卢天健. 通孔金属泡沫渗透率解析模型[J]. 力学学报, 2014, 46(6): 982-986. doi: 10.6052/0459-1879-14-115
Yang Xiaohu, Bai Jiaxi, Lu Tianjian. A SIMPLISTIC ANALYTICAL MODEL OF PERMEABILITY FOR OPEN-CELL METALLIC FOAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 982-986. doi: 10.6052/0459-1879-14-115
Citation: Yang Xiaohu, Bai Jiaxi, Lu Tianjian. A SIMPLISTIC ANALYTICAL MODEL OF PERMEABILITY FOR OPEN-CELL METALLIC FOAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 982-986. doi: 10.6052/0459-1879-14-115

通孔金属泡沫渗透率解析模型

doi: 10.6052/0459-1879-14-115
基金项目: 国家重点基础研究发展规划(2011CB6103005)和高等学校学科创新引智计划(B06024)资助项目.
详细信息
    作者简介:

    卢天健,教授,主要研究方向:固体力学,传热学及生物热力学.E-mail:tjlu@mail.xjtu.edu.cn

  • 中图分类号: TK312

A SIMPLISTIC ANALYTICAL MODEL OF PERMEABILITY FOR OPEN-CELL METALLIC FOAMS

Funds: The project was supported by the National Basic Research Program of China (2011CB610305) and the National 111 Project of China (B06024).
  • 摘要: 针对通孔金属泡沫中的渗透率预测及现有理论模型的局限性,发展了一种新的全解析渗透率模型. 该模型以立方体结构作为代表单元,采用基于追踪流体微团轨迹的分支算法解析求解代表单元内的流动迂曲度. 渗透率的表达形式简单且不含任何拟合或经验参数,仅是孔隙率与平均孔径的函数. 采用实验测量和文献数据对模型预测进行了验证. 结果表明:提出的模型能够在较为宽广的孔隙率(0.55~0.98) 和孔密度(5~100 PPI) 范围内预测孔通孔金属泡沫的渗透率;采用分支算法得到的流动迂曲度能够较好地描述流体在通孔金属泡沫中的流动特征;采用开孔率修正的解析模型亦能对半开孔泡沫材料的渗透率提供良好预测.

     

  • 郁伯铭. 分形介质的传热与传质分析. 工程热物理学报,2003, 24(3):481-483 (Yu Boming. Analysis of heat and mass transfer in fractal media. Journal of Engineering Thermophysics, 2003, 24(3):481-483 (in Chinese))
    蔡建超,郁伯铭. 多孔介质自发渗吸研究进展. 力学进展,2012,42(6):735-754 (Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advance in Mechanics, 2012,42(6):735-754 (in Chinese))
    Hunt M, Tien C. Effects of thermal dispersion on forced convection in fibrous media. International Journal of Heat and Mass Transfer, 1988, 31(2): 301-309  
    Yang XH, Lu TJ, Kim T. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams. Journal of Physics D: Applied Physics, 2013, 46(25): 255302-6  
    Darcy HPG. Détermination des lois d'écoulement de l'eau á travers le sable. Paris, France: Victor Dalmont Inc., 1856, 590-594 (in French)
    Forchheimer P. Wasserbewegung durch boden. Netherlands: Deutsch Ing, 1901, 1782-1788 (in German)
    Loya V. The effect of microstructure on the permeability of metal foams [Master Thesis]. Montreal Quebec, Canada: Department of Mechanical and Industrial Engineering, University of Concordia, 2005, 47-59
    Kamath M, Balaji C, Venkateshan S. Convection heat transfer from aluminium and copper foams in a vertical channel-An experimental study. International Journal of Thermal Sciences, 2013, 64: 1-10  
    Wade AD. Natural convection in water-saturated metal foam with a superposed fluid layer. [MPhil Thesis]. Minneapolis, US: Department of Mechanical Engineering, University of Minnesota, 2010, 51-53
    Garrido GI, Patcas F, Lang S, et al. Mass transfer and pressure drop in ceramic foams: a description for different pore sizes and porosities. Chemical Engineering Science, 2008, 63(21): 5202-5217  
    Wu Z, Caliot C, Bai F, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Applied Energy, 2010, 87(2): 504-513  
    Happel J. Viscous flow relative to arrays of cylinders. AIChE Journal, 1959, 5(2): 174-177  
    Kuwabara S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the Physical Society of Japan, 1959, 14(4): 527-532  
    Du Plessis JP, Montillet A, Comiti J, et al. Pressure drop prediction for flow through high porosity metallic foams. Chemical Engineering Science, 1994, 49(21): 3545-3553  
    Bhattacharya A, Calmidi VV, Mahajan R. Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031  
    Shen L, Chen Z. Critical review of the impact of tortuosity on diffusion. Chemical Engineering Science, 2007, 62(14): 3748-3755  
    Beeckman J. Mathematical description of heterogeneous materials. Chemical Engineering Science, 1990, 45(8): 2603-2610  
    Weaire DL, Hutzler S. The Physics of Foams. Oxford, UK: Oxford University Press, 2001
    Lu TJ, Stone HA, Ashby MF. Heat transfer in open-cell metal foams. Acta Materialia, 1998, 46(10): 3619-3635  
    Yang XH, Lu TJ, Kim T. A simplistic model for the tortuosity in two-phase close-celled porous media. Journal of Physics D: Applied Physics, 2013, 46(12): 125305  
    Hoang MT, Perrot C. Identifying local characteristic lengths governing sound wave properties in solid foams. Journal of Applied Physics, 2013, 113(8): 084905  
  • 加载中
计量
  • 文章访问数:  904
  • HTML全文浏览量:  67
  • PDF下载量:  1078
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-16
  • 修回日期:  2014-09-15
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回