EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光热激励下微悬臂梁在流体中的振动研究

董天宝 宋亚勤

董天宝, 宋亚勤. 光热激励下微悬臂梁在流体中的振动研究[J]. 力学学报, 2014, 46(5): 703-709. doi: 10.6052/0459-1879-14-095
引用本文: 董天宝, 宋亚勤. 光热激励下微悬臂梁在流体中的振动研究[J]. 力学学报, 2014, 46(5): 703-709. doi: 10.6052/0459-1879-14-095
Dong Tianbao, Song Yaqin. STUDY ON THE VIBRATION OF MICROCANTILEVERS IMMERSED IN FLUIDS UNDER PHOTOTHERMAL EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 703-709. doi: 10.6052/0459-1879-14-095
Citation: Dong Tianbao, Song Yaqin. STUDY ON THE VIBRATION OF MICROCANTILEVERS IMMERSED IN FLUIDS UNDER PHOTOTHERMAL EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 703-709. doi: 10.6052/0459-1879-14-095

光热激励下微悬臂梁在流体中的振动研究

doi: 10.6052/0459-1879-14-095
基金项目: 国家自然科学基金(10972169,11272243),中央高校基本科研业务费专项资金和陕西省教育厅重点实验室科研计划(13JS103)资助项目.
详细信息
    作者简介:

    宋亚勤,副教授,主要研究方向:热弹性和光热振动.E-mail:yqsong@mail.xjtu.edu.cn

  • 中图分类号: O369

STUDY ON THE VIBRATION OF MICROCANTILEVERS IMMERSED IN FLUIDS UNDER PHOTOTHERMAL EXCITATION

Funds: The project was supported by the National Natural Science Foundation of China (10972169, 11272243), the Fundamental Research Funds for the Central Universities and the Scientific Research Program Funded by Shaanxi Provincial Education Department (13JS103).
  • 摘要: 微悬臂梁结构广泛应用于微纳电子机械系统. 在实际应用中,涂层和工作环境的变化对微悬臂梁结构动态工作模式有着不容忽视的影响. 运用流体中双层微悬臂梁的光热振动模型,研究了在激光光热驱动下,金涂层微悬臂梁在不同流体中的振动特性. 理论上得到了微悬臂梁的温度场,光热驱动力和振动变形场的解析表达式. 研究结果表明,流体环境对微悬臂梁的光热振动谱有显著的影响,主要表现在共振频率的偏移和品质因子的变化两个方面. 相比较于悬臂梁在真空中的响应,当悬臂梁在空气中振动时,共振频率向低频产生微小的漂移(0.7%),共振峰未发生明显变化;然而,当悬臂梁在液体中振动的时候,共振频率向低频产生巨大的漂移(58%~80%),而且品质因子发生量级上的减小,共振峰发生了畸变. 本研究对微纳探测以及原子力显微镜等仪器的设计优化,有着一定的理论指导意义.

     

  • Park J, Nishida S, Lambert P, et al. High-resolution cantilever biosensor resonating at air-liquid in a microchannel. Lab Chip, 2011, 11: 4187-4193  
    Gfeller KY, Nugaeva N, Hegner M. Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosensors and Bioelectronics, 2005, 21: 528-533  
    Faegh S, Jalili N, Sridhar S. A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments. Sensors, 2013, 13: 6089-6108  
    Krause AR, Neste CV, Senesac L, et al. Trace explosive detection using photothermal deflection spectroscopy. Journal of Applied Physics, 2008, 103: 094906.1-0949066  
    Gaitas A, Li T, Zhu W. A probe with ultrathin film deflection sensor for scanning probe microscopy and material characterization. Sensors and Actuators A, 2011, 168: 229-232  
    宋亚勤. 激光激励微型硅悬臂梁的振动特性研究. 力学学报, 2010, 42(4): 758-763 (Song Yaqin. Study on the vibration silicon cantilevers under laser excitation. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 758-763 (in Chinese))
    Volden T, Zimmermann M, Lange D, et al. Dynamics of CMOS-based thermally actuated cantilever arrays for force microscopy. Sensors and Actuators A, 2004, 115: 516-522  
    Bianco S, Cocuzza M, Ferrero S, et al. Silicon resonant microcantilevers for absolute pressure measurement. Journal of Vacuum Science and Technology B, 2006, 24: 1803-1809  
    Alvarez M, Tamayo J, Plaza JA, et al. Dimension dependence of the thermomechanical noise of microcantilevers. Journal of Applied Physics, 2006, 99: 024910.1-024910.7  
    Campbell GA, Medina MB, Mutharasan R. Detection of Staphylococcus enterotoxin B at picogram levels using piezoelectric-excited millimeter-sized cantilever sensors. Sensors and Actuators B, 2007, 126: 354-360  
    Requa MV, Turner KL. Electromechanically driven and sensed parametric resonance in silicon microcantilevers. Applied Physics Letters, 2006, 88: 263508.1-263508.3  
    Todorovi? DM, Nikoli? PM, Boji?i? AI. Photoacoustic frequency transmission technique: Electronic deformation mechanism in semiconductor. Journal of Applied Physics, 1999, 85: 7716-7726  
    Song YQ, Cretin B, Todorovi? DM, et al. Study of laser excited vibration of silicon cantilever. Journal of Applied Physics, 2008, 104: 104909.1-104909.6  
    Kiracofe D, Kobayashi D, Labuda A, et al. High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids. Review of Scientific Instruments, 2011, 82: 013702.1-013702.7  
    Dufour I, Lemaire E, Caillard B, et al. Effect of hydrodynamic force on microcantilever vibrations: Applications to liquid-phase chemical sensing. Sensors and Actuators B, 2014, 192: 664-672  
    Yu YS, Zhao YP Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney-Rivlin and linear elastic constitutive models. Journal of Colloid and Interface Science, 2009, 332: 467-476
    Chon JWM, Mulvaney P, Sader JE. Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. Journal of Applied Physics, 2000, 87: 3978-3988  
    Tamayo J, Humphris ADL, Owen RJ, et al. High-Q dynamic force microscopy in liquid and its application to living cells. Biophysical Journal, 2001, 81: 526-537  
    Sader JE. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 1998, 84: 64-76  
    Ramos D, Tamayo J, Mertens J, et al. Photothermal excitation of microcantilevers in liquids. Journal of Applied Physics, 2006, 99: 124904.1-124904.8  
    Yi JW, Shih WY, Shih WH. Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. Journal of Applied Physics, 2002, 91: 1680-1686  
    Eysden CAV, Sader JE. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order. Journal of Applied Physics, 2007, 101: 044908.1-044908.11  
    Salapaka MV, Bergh HS, Lai J, et al. Multi-mode noise analysis of cantilevers for scanning probe microscopy. Journal of Applied Physics, 1997, 81: 2480-2487  
    Rast S, Wattinger C, Gysin U, et al. Dynamics of damped cantilevers. Review of Scientific Instruments, 2000, 71: 2772-2775  
    赵亚溥. 表面与界面物理力学. 北京:科学出版社, 2012 (Zhao Yapu. Physical Mechanics of Surfaces and Interfaces. Beijing: Science Press, 2012 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1058
  • HTML全文浏览量:  47
  • PDF下载量:  989
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-05-29
  • 刊出日期:  2014-09-18

目录

    /

    返回文章
    返回