EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粗粒化水分子模型的Cu-H2O纳米流体黏度模拟

何昱辰 刘向军

何昱辰, 刘向军. 基于粗粒化水分子模型的Cu-H2O纳米流体黏度模拟[J]. 力学学报, 2014, 46(6): 871-878. doi: 10.6052/0459-1879-14-087
引用本文: 何昱辰, 刘向军. 基于粗粒化水分子模型的Cu-H2O纳米流体黏度模拟[J]. 力学学报, 2014, 46(6): 871-878. doi: 10.6052/0459-1879-14-087
He Yuchen, Liu Xiangjun. SIMULATION STUDIES OF VISCOSITIES OF Cu-H2O NANOFLUIDS BASED ON COARSE GRAINING WATER MOLECULES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 871-878. doi: 10.6052/0459-1879-14-087
Citation: He Yuchen, Liu Xiangjun. SIMULATION STUDIES OF VISCOSITIES OF Cu-H2O NANOFLUIDS BASED ON COARSE GRAINING WATER MOLECULES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 871-878. doi: 10.6052/0459-1879-14-087

基于粗粒化水分子模型的Cu-H2O纳米流体黏度模拟

doi: 10.6052/0459-1879-14-087
基金项目: 中央高校基本科研业务费专项资金资助项目(FRF-SD-12-007B).
详细信息
    作者简介:

    刘向军,教授,主要研究方向:多相反应流的机理与模型研究.

  • 中图分类号: TK124

SIMULATION STUDIES OF VISCOSITIES OF Cu-H2O NANOFLUIDS BASED ON COARSE GRAINING WATER MOLECULES

Funds: The project was supported by the Fundamental Research Funds for the Central Universities (FRF-SD-12-007B).
  • 摘要: 分子动力学模拟是研究纳米流体的黏度特性的重要手段,但计算量庞大. 文章通过对基液水分子粗粒化,使得计算量大幅度减小,且计算精度与全原子模拟相当. 基于平衡态分子动力学,模拟研究了Cu-H2O 纳米体系的微观运动特性,通过格林- 库博(Green-Kubo) 公式对Cu-H2O 纳米流体的黏度进行了模拟计算,并考察了温度、体积分数、粒径和颗粒形状对于Cu-H2O 纳米流体黏度的影响,对已有的悬浮液黏度经验公式进行了修正.

     

  • 宣益民,李强. 纳米流体能量传递理论与应用. 北京: 科学出版社, 2010 (Xuan Yiming, Li Qiang. Energy Transfer Theory and Application of Nanofluid. Beijing: Science Press, 2010 (in Chinese))
    凌志勇,孙东健, 张忠强等. 温度和颗粒浓度对纳米流体粘度的影响. 功能材料, 2013, 44(1): 92-95 (Ling Zhiyong, Sun Dongjian, Zhang Zhongqiang, et al. Effect of temperature and nanopartcle concentrantion on the viscosity of nanofluids. Functional Materials, 2013, 44(1): 92-95 (in Chinese))
    唐忠利,彭林明,张树杨等. 纳米流体黏度和流变特性的试验研究.化学工业与工程, 2012, 29(3): 1-5 (Tang Zhongli, Peng Linming, Zhang Shuyang, et al. Experimental study of viscosity and rheological properties of nanofluids. Chemical Industry and Engineering, 2012, 29(3): 1-5 (in Chinese))
    Syzrantsev VV, Zavyalov AP, Bardakhanov SP. The role of associated liquid layer at nanoparticles and its influence on nanofluids viscosity. International Journal of Heat and Mass Transfer, 2014, 72: 501-506  
    林晓辉,张赤斌,马传浩等. 纳米流体在圆管中输运的两相流理论模型及黏度计算. 中国科学, 2012,42(6):647-656 (Lin Xiaohui, Zhang Chibin, Ma Chuanhao, et al. A two-phase flow theoretical model of nanofluid flowing in pipe and viscosity calculation. Scientia Sinica, 2012, 42(6): 647-656 (in Chinese))
    Yadav D, Bhargava R, Agrawal GS, et al. Thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluidics and Nanofluidics, 2014, 16 (1-2): 425-440  
    Allen MP, Tildesley DJ. Computer Simulation of Liquids. Bristol: J W Arrowmith Ltd, 1987
    Kumar P, Varanasi SR, Yashonath S. Relation between the diffusivity, viscosity, and ionic radius of LiCl in water, methanol, and ethylene glycol: a molecular dynamics simulation. J Phys Chem B, 2013, 117(27): 8196-208  
    Chen X, Cao GX, Han AJ, et al. Nanoscale fluid transport: size and rate effects. Nano Letters, 2008, 8(9): 2988-2992  
    Thomas JA, McGaughey AJH. Reassessing fast water transport through carbon nanotubes. Nano Letters, 2008, 8(9): 2788-2793  
    Rudyak VY, Dimov SV, Krasnolutsky SL, et al. Effective viscosity of the nanofluids: Experimental studying and molecular dynamics simulation. Nanotech Conference & Expo, Washington DC, USA, 2013
    Puliti G. Properties of Au-H2O nanofluids using molecular dynamics. [PhD Thesis]. Indiana: University of Notre Dame, 2013
    Marrink SJ, Risselada H,Yefimov S, et al. The MARTINI force field: Coarse grained model for biomolecular simulation. J Phys Chem B, 2007, 111(27): 7812-7824  
    Voth GA. Coarse-graining of Condensed Phase and Biomolecular Systems. New York: CRC Press, 2009
    Monticelli L, Kandasamy SK, Periole X, et al. The MARTINI coarse-grained force field: Extension to proteins. Journal of Chemical Theory and Computation, 2008, 4(5): 819-834  
    Lopez CA, Rzepiela AJ, Vries AH, et al. Martini coarse-grained force field: Extension to carbohydrates. Journal of Chemical Theory and Computation, 2009, 5 (12): 3195-3210  
    Hansen JP,MeDonald IR. Theory of Simple Liquids. New York: Academic Press, 1986.Chap. 7-8
    Daw MS, Baskes MI. Embedded atom method derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29 (12): 8486-8495
    Mishin Y, Mehl MJ, Papaconstantopoulos DA, et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Physical Review B, 2001, 63: 224106  
    Kole M, Dey TK. Viscosity of alumina nanoparticles dispersed in car engine coolant. Experimental Thermal and Fluid Science, 2010, 34(6): 677-683  
    Nguyen CT, Desgranges F, Galanis N, et al. Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable. International Journal of Thermal Science, 2008, 47(2):103-111  
    Einstein A. Investigations on the Theory of the Browmian Movement. New York, Dover, 1956
    Batchelor HC. The effect of brownianmotion on the bulk stress in a suspension of spherical particles. J F1uid Mech, 1977: 83-97
  • 加载中
计量
  • 文章访问数:  1289
  • HTML全文浏览量:  64
  • PDF下载量:  1670
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-06-16
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回