EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Lenosky原子作用势单层石墨烯片的力学模型

黄坤 殷雅俊 屈本宁 吴继业

黄坤, 殷雅俊, 屈本宁, 吴继业. 基于Lenosky原子作用势单层石墨烯片的力学模型[J]. 力学学报, 2014, 46(6): 905-910. doi: 10.6052/0459-1879-14-076
引用本文: 黄坤, 殷雅俊, 屈本宁, 吴继业. 基于Lenosky原子作用势单层石墨烯片的力学模型[J]. 力学学报, 2014, 46(6): 905-910. doi: 10.6052/0459-1879-14-076
Huang Kun, Yin Yajun, Qu Benning, Wu Jiye. A MECHANICS MODEL OF A MONOLAYER GRAPHENE BASED ON THE LENOSKY INTERATOMIC POTENTIAL ENERGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 905-910. doi: 10.6052/0459-1879-14-076
Citation: Huang Kun, Yin Yajun, Qu Benning, Wu Jiye. A MECHANICS MODEL OF A MONOLAYER GRAPHENE BASED ON THE LENOSKY INTERATOMIC POTENTIAL ENERGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 905-910. doi: 10.6052/0459-1879-14-076

基于Lenosky原子作用势单层石墨烯片的力学模型

doi: 10.6052/0459-1879-14-076
基金项目: 国家自然科学基金资助项目(11272175,11072125).
详细信息
    作者简介:

    黄坤,讲师,博士,主要研究方向:非线性动力学、微纳米力学.

  • 中图分类号: O369

A MECHANICS MODEL OF A MONOLAYER GRAPHENE BASED ON THE LENOSKY INTERATOMIC POTENTIAL ENERGY

Funds: The project was supported by the National Natural Science Foundation of China (11272175, 11072125).
  • 摘要: 基于对Lenosky 碳-碳共价键作用势连续化得到的单层石墨烯的势能和Hamilton 原理,导出了单层石墨烯的动力学方程. 使用该数学模型及Galerkin 方法,研究了矩形单层石墨烯片的静力挠曲问题. 结果显示,石墨烯片的几何尺寸较小时,弯曲刚度对结构的受力影响较大,可用板理论来描述;随着结构尺寸的增大,弯曲刚度的影响迅速降低;当矩形石墨烯片的短边尺寸大于10 nm 时,可以忽略弯曲刚度对结构的影响,使用薄膜理论来描述单层石墨烯的力学性质.

     

  • Geim AK, Novoselov KS. The rise of graphene. Nature Materials, 2007, 6(3): 183-191  
    Rao CNR, Biswas K, Subrahmanyam KS, et al. Graphene, the new nanocarbon. Journal of Materials Chemistry, 2009, 19(17): 2457-2469  
    Neto AC, Geim A. Graphene: Graphene's properties. New Scientist, 2012, 214(2863): iv-v
    Rao CNR, Sood AK, Subrahmanyam KS, et al. Graphene: The new two-dimensional nanomaterial. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777  
    嵇天浩, 孙妹, 韩鹏. 半导体/石墨烯纳米复合材料的制备及其应用进展. 新型炭材料, 2013, 6: 401-407 (Ji Tianhao, Sun Mei, Han Peng. A review of the preparation and applications of graphene/semiconductor composites. New Carbon Materials, 2013, 6: 401-407 (in Chinese))
    辜萍, 王 宇, 李广海. 碳纳米管的力学性能及碳纳米管复合材料研究. 力学进展, 2002, 32(4): 563-578 (Gu Ping, Wang Yu, Li Guanghai. Progress in mechanical properties of carbon nanotube and carbon-nanotube -based composites. Advances in Mechanics, 2002, 32(4): 563-578 (in Chinese))
    Huang X, Qi X, Boey F, et al. Graphene-based composites. Chemical Society Reviews, 2012, 41(2): 666-686  
    韩同伟, 贺鹏飞, 王健 等. 石墨烯拉伸力学性能温度相关性的数值模拟. 同济大学学报: 自然科学版, 2009, 37(12): 1638-1641 (Han Tongwei, He Pengfei, Wang Jian, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single graphene sheet. Journal of Tongji University (Natural Science), 2009, 37(12): 1638-1641 (in Chinese))
    Wagner P, Ivanovskaya VV, Rayson MJ, et al. Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition. Journal of Physics: Condensed Matter, 2013, 25(8): 155302
    Huang M, Pascal TA, Kim H, et al. Electronic- mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Letters, 2011, 11(3): 1241-1246  
    Chien SK, Yang YT. Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations. Applied Physics Letters, 2011, 98(3): 033107  
    Wei Y, Wang B, Wu J, et al. Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Letters, 2012, 13(1): 26-30
    Koskinen P, Kit OO. Approximate modeling of spherical membranes. Physical Review B, 2010, 82(23): 235420  
    Tu Z, Ou-Yang Z. Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number. Physical Review B, 2002, 65(23): 233407  
    Wang L, Zheng Q, Liu JZ, et al. Size dependence of the thin-shell model for carbon nanotubes. Physical Review Letters, 2005, 95(10): 105501  
    Huang Y, Wu J, Hwang KC. Thickness of graphene and single-wall carbon nanotubes. Physical Review B, 2006, 74(24): 245413  
    Zhang DB, Akatyeva E, Dumitric? T. Bending ultrathin graphene at the margins of continuum mechanics. Physical Review Letters, 2011, 106(25): 255503  
    Yue K, Gao W, Huang R, et al. Analytical methods for the mechanics of graphene bubbles. Journal of Applied Physics, 2012, 112(8): 083512  
    Iyakutti K, Surya VJ, Emelda K, et al. Simulation of ripples in single layer graphene sheets and study of their vibrational and elastic properties. Computational Materials Science, 2012, 51(1): 96-102  
    Wang L, He X. Vibration of a multilayered graphene sheet with initial stress. Journal of Nanotechnology in Engineering and Medicine, 2010, 1(4): 041004  
    Lenosky T, Gonze X, Teter M, et al. Energetics of negatively curved graphitic carbon. Nature, 1992, 355: 333-335  
    Dym CL, Shames IH. Solid Mechanics. New York: McGraw-Hill, 1973
    Landau LD, Lifshitz EMT. Course of Theoretical Physics: Mechanics. Holland: Elsevier, 1982
    José JV, Saletan EJ. Classical Dynamics: A Contemporary Approach. Cambridge: Cambridge University Press, 1998
    Kusminskiy SV, Campbell DK, Neto AHC. Lenosky's energy and the phonon dispersion of graphene. Physical Review B, 2009, 80(3): 035401
  • 加载中
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  104
  • PDF下载量:  819
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-24
  • 修回日期:  2014-05-23
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回