EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三圆形颗粒在通道中沉降运动的数值研究

胡平 张兴伟 牛小东 孟辉

胡平, 张兴伟, 牛小东, 孟辉. 三圆形颗粒在通道中沉降运动的数值研究[J]. 力学学报, 2014, 46(5): 673-684. doi: 10.6052/0459-1879-14-059
引用本文: 胡平, 张兴伟, 牛小东, 孟辉. 三圆形颗粒在通道中沉降运动的数值研究[J]. 力学学报, 2014, 46(5): 673-684. doi: 10.6052/0459-1879-14-059
Hu Ping, Zhang Xingwei, Niu Xiaodong, Meng Hui. NUMERICAL STUDY ON THE SEDIMENTED MOTION CHARACTERISTICS OF THREE ALIGNED CIRCULAR PARTICLES IN THE INCLINED CHANNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 673-684. doi: 10.6052/0459-1879-14-059
Citation: Hu Ping, Zhang Xingwei, Niu Xiaodong, Meng Hui. NUMERICAL STUDY ON THE SEDIMENTED MOTION CHARACTERISTICS OF THREE ALIGNED CIRCULAR PARTICLES IN THE INCLINED CHANNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 673-684. doi: 10.6052/0459-1879-14-059

三圆形颗粒在通道中沉降运动的数值研究

doi: 10.6052/0459-1879-14-059
基金项目: 国家自然科学基金(11372168),广东省领军人才基金(51375287)和广东省自然科学基金(S2013040013876)资助项目.
详细信息
    作者简介:

    张兴伟,博士,讲师,主要研究方向为:流体力学,流固耦合分析.E-mail:zhangxw@stu.edu.cn

  • 中图分类号: O368

NUMERICAL STUDY ON THE SEDIMENTED MOTION CHARACTERISTICS OF THREE ALIGNED CIRCULAR PARTICLES IN THE INCLINED CHANNELS

Funds: The project was supported by the National Natural Science Foundation of China (11372168), the Second-batch Leading Talent Project of Guangdong Province in China(51375287), and the Natural Science Foundation of Guangdong Province of China (S2013040013876).
  • 摘要: 主要应用浸没边界的格子玻尔兹曼方法(immersed boundary-lattice Boltzmann method, IB–LBM) 对处于不同倾斜角度通道内的三个刚体圆形颗粒在重力作用下下落的动力学特性进行了计算研究. 首先分析通道倾斜角度的影响, 结果显示当通道倾斜角处于59°90°的范围时会发生后一个颗粒超越前一个颗粒的现象. 其次, 研究了Re对颗粒沉降特性的影响, 结果表明Re 越大, 颗粒间发生聚集的时间越早. 研究还发现当3 个颗粒的直径大小不均匀时, 颗粒由大到小纵向依次排列, 或者出现中间小球直径较相邻两个小球直径大的排列情况, 均能促使颗粒加快聚集. 本文的研究结果可为环境工程及地质学中的颗粒沉降问题提供有价值的参考.

     

  • Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I. Theoretical foundation. J Fluid Mech 1994, 271: 285-310
    Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part II. Numerical results. J Fluid Mech , 1994, 271: 311-339  
    Feng ZG, Michaelides EE. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. Journal of Computational Physics, 2004, 195: 602-628  
    Kang SK. Immersed boundary methods in the lattice boltzmann equation for flow simulation. [PhD Thesis], Texas A&M University, 2010: 91-100
    张武生, 杨燕华, 徐济. 格子玻尔兹曼方法及其应用. 现代机械, 2004, 4: 4-6 (Zhang Wusheng, Yang Yanhua, Xu Ji. The application of Lattice Boltzmann method. Modern Machinery, 2004, 4: 4-6 (in Chinese))
    Fogelson AL, Peskin CS. A fast numerical method for solving the three-dimensional Stokes equation in the presence of suspended particles. J. Comput. Phys., 1988, 79: 50-69
    Feng ZG, Michaelides EE. Interparticle forces and lift on a particle attached to a solid boundary in suspension flow. Phys Fluids, 2002, 24: 49-60
    Ladd AJC, Verberg R. Lattice-Boltzmann simulation of particle-fluid suspensions. J. Stat. Phys., 2001, 104: 1191-1251
    Peskin CS. Numerical analysis of blood flow in the heart. J. Comput. Phys., 1977, 25: 220-252
    Wu J, Shu C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. Journal of Computational Physics, 2009, 228: 1963-1979  
    Niu XD, Shu C, Chew YT, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Physics Letters A, 2006, 354: 173-182  
    Peskin CS. The immersed boundary method. Acta Numerica, 2002, 11: 479-517
    Wang ZL, Fan JR, Luo K. Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. International Journal of Multiphase Flow, 2008, 34: 283-302  
    吴锤结, 周菊光. 悬浮颗粒运动的Boltzmann数值模拟, 力学学报, 2004, 36: 151-162 (Wu Chuijie, Zhou Juguang, Numerical simulation of suspension motion of irregular shaped particles via the lattice Boltzmann method. Acta Mechanica Sinica, 2004, 36: 151-162 (in Chinese))
    Robinson M, Luding S, Ramaioli M. Fluid-particle flow and validation using two-way-coupled mesoscale SPH-DEM. International Journal of Multiphase Flow, 2014, 59: 121-134  
    Feng ZG, Michaelides E. The immersed boundary-lattice boltzmann method for solving fluid-particles interaction problems. Journal of Computational Physics, 2004, 195(2): 602-628  
    Zhang H, Tan YQ, Shu S, et al. Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modelling. Computers & Fluids, 2014, 94: 37-48  
    何雅玲, 王勇等. 格子Boltzmann方法的理论及应用. 北京: 科学出版社, 2008: 31-55 (He Yaling, Wang Yong. Lattice Boltzmann Method: Theory and Applications. Beijing: Science Press, 2008: 31-55 (in Chinese))
    Dutsch H, Durst F, Becker S, et al. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. Journal of Fluid Mechanics, 1998, 360: 249-271  
    Yuan HZ, Niu XD, Shu S, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Computers & Mathematics with Applications, 2014, 67: 1039-1056  
  • 加载中
计量
  • 文章访问数:  1126
  • HTML全文浏览量:  81
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-05
  • 修回日期:  2014-04-09
  • 刊出日期:  2014-09-18

目录

    /

    返回文章
    返回