EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微-细观机理的混凝土疲劳损伤本构模型

丁兆东 李杰

丁兆东, 李杰. 基于微-细观机理的混凝土疲劳损伤本构模型[J]. 力学学报, 2014, 46(6): 911-919. doi: 10.6052/0459-1879-14-041
引用本文: 丁兆东, 李杰. 基于微-细观机理的混凝土疲劳损伤本构模型[J]. 力学学报, 2014, 46(6): 911-919. doi: 10.6052/0459-1879-14-041
Ding Zhaodong, Li Jie. THE FATIGUE CONSTITUTIVE MODEL OF CONCRETE BASED ON MICRO-MESO MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 911-919. doi: 10.6052/0459-1879-14-041
Citation: Ding Zhaodong, Li Jie. THE FATIGUE CONSTITUTIVE MODEL OF CONCRETE BASED ON MICRO-MESO MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 911-919. doi: 10.6052/0459-1879-14-041

基于微-细观机理的混凝土疲劳损伤本构模型

doi: 10.6052/0459-1879-14-041
基金项目: 国家自然科学基金重大研究计划资助项目(91315301).
详细信息
    作者简介:

    李杰,教授,主要研究方向:随机动力学、混凝土损伤力学、生命线工程.

  • 中图分类号: O346.2

THE FATIGUE CONSTITUTIVE MODEL OF CONCRETE BASED ON MICRO-MESO MECHANICS

Funds: The project was supported by the Major Research Plan of the National Natural Science Foundation of China (91315301).
  • 摘要: 该文致力于混凝土疲劳损伤发展机理的微细观解释. 以速率过程理论为基础,通过考虑裂纹断裂过程区中的水分子动力作用,在细观尺度上建立了具有物理机理的疲劳损伤能量耗散表达式. 结合细观随机断裂模型,以宏观损伤力学为框架,建立了疲劳损伤演化方程. 通过数值模拟,计算了单轴受拉时的疲劳损伤演化以及不同加载幅度下的疲劳寿命. 与相关试验结果的对比显示出该文模型能够很好地表现混凝土材料的疲劳损伤演化过程.

     

  • Holmen J. Fatigue of concrete by constant and variable amplitude loading. ACI Special Publication, 1982, 75: 71-110
    Hsu T. Fatigue of plain concrete. ACI Journal, 1981, 78 (4): 292-305
    Kim J, Kim Y. Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research, 1996, 26 (10): 1513-1523  
    Gao L, Hsu CTT. Fatigue of concrete under uniaxial compression cyclic loading. ACI Materials Journal, 1998, 95 (5): 575-581
    Breitenbücher R, Ibuk H. Experimentally based investigations on the degradation-process of concrete under cyclic load. Materials and Structures, 2006, 39 (7): 717-724
    Breitenbücher R, Ibuk H, Alawieh H. Influence of cyclic loading on the degradation of mechanical concrete properties. Advances in Construction Materials 2007, 2007: 317-324
    Cornelissen H. Fatigue failure of concrete in tension. Heron, 1984, 29 (4): 1-68
    Bazant ZP, Xu K. Size effect in fatigue fracture of concrete. ACI Materials Journal, 1991, 88 (4): 390-399
    Oh B. Fatigue life distributions of concrete for various stress levels. ACI Materials Journal, 1991, 88 (2): 122-128
    Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6 (6): 773-781  
    Hordijk D. Local approach to fatigue of concrete. [PhD Thesis]. Delft: Delft University of Technology, 1991
    Nguyen O, Repetto E, Ortiz M, et al. A cohesive model of fatigue crack growth. International Journal of Fracture, 2001, 110 (4): 351-369  
    Yang B, Mall S, Ravi-Chandar K. A cohesive zone model for fatigue crack growth in quasibrittle materials. International Journal of Solids and Structures, 2001, 38 (22-23): 3927-3944
    Marigo J. Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Engineering Fracture Mechanics, 1985, 21 (4): 861-874  
    Papa E, Taliercio A. Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete. Engineering Fracture Mechanics, 1996, 55 (2): 163-179  
    Alliche A. Damage model for fatigue loading of concrete. International Journal of Fatigue, 2004, 26 (9): 915-921  
    Mai SH, Le-Corre F, Foret G, et al. A continuum damage modeling of quasi-static fatigue strength of plain concrete. International Journal of Fatigue, 2012, 37: 79-85  
    Suaris W, Ouyang C, Fernando V. Damage model for cyclic loading of concrete. Journal of Engineering Mechanics, 1990, 116 (5): 1020-1035  
    Al-Gadhib A, Baluch M, Shaalan A, et al. Damage model for monotonic and fatigue response of high strength concrete. International Journal of Damage Mechanics, 2000, 9 (1): 57  
    Lü P, Li Q, Song Y. Damage constitutive of concrete under uniaxial alternate tension-compression fatigue loading based on double bounding surfaces. International journal of solids and structures, 2004, 41 (11-12): 3151-3166
    Tobolsky A, Eyring H. Mechanical properties of polymeric materials. The Journal of Chemical Physics, 1943, 11: 125-134  
    Krausz AS, Krausz K. Fracture Kinetics of Crack Growth. Dordrecht: Springer, 1988
    Le JL, Ba?ant ZP, Bazant MZ. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids, 2011, 59 (7): 1291-1321  
    Mondal P. Nanomechanical properties of cementitious materials. [PhD Thesis]. Evanston: Northwestern University, 2008
    Ulm FJ, Constantinides G, Heukamp FH. Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Materials and Structures, 2004, 37 (1): 43-58  
    Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221: 163-198
    Suresh S. Fatigue of Materials. Cambridge: Cambridge University Press, 1998
    Horn RG, Israelachvili JN. Direct measurement of structural forces between two surfaces in a nonpolar liquid. The Journal of Chemical Physics, 1981, 75 (3): 1400-1411  
    Horn RG. Surface forces and their action in ceramic materials. Journal of the American Ceramic Society, 1990, 73 (5): 1117-1135  
    Lawn B. Fracture of Brittle Solids. Cambridge: Cambridge University Press, 1993
    Maali A, Cohen-Bouhacina T, Couturier G, et al. Oscillatory dissipation of a simple confined liquid. Physical Review Letters, 2006, 96 (8): 086105  
    Christov NC, Danov KD, Zeng Y, et al. Oscillatory structural forces due to nonionic surfactant micelles: Data by colloidal-probe AFM vs theory. Langmuir, 2009, 26 (2): 915-923
    谢和平. 分形-岩石力学导论. 北京: 科学出版社, 1996 (Xie Heping. Introduction to Fractals-rock Mechanics. Beijing: Science Press, 1996 (in Chinese))
    Johnston WG, Gilman JJ. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. Journal of Applied Physics, 1959, 30 (2): 129-144  
    李杰. 混凝土随机损伤本构关系研究新进展. 东南大学学报(自然科学版), 2002, 32 (5): 750-755 (Li Jie. Recent research progress on the stochastic damage constitutional law of concrete. Journal of Southeast University (Natural Science Edition), 2002, 32 (5): 750-755 (in Chinese))
    李杰. 混凝土随机损伤力学的初步研究. 同济大学学报(自然科学版), 2004, 32 (10): 1270-1277 (Li Jie. Research on the stochastic damage mechanics for concrete materials and structures. Journal of Tongji University (Natural Science Edition), 2004, 32 (10): 1270-1277 (in Chinese))
    李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系——单轴受压分析. 同济大学学报(自然科学版), 2003, 31 (5): 505-509 (Li Jie, Lu Zhaohui, Zhang Qiyun. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress. Journal of Tongji University (Natural Science Edition), 2003, 31 (5): 505-509 (in Chinese))
    李杰, 张其云. 混凝土随机损伤本构关系. 同济大学学报(自然科学版), 2001, 29 (10): 1135-1141 (Li Jie, Zhang Qiyun. Study of stochastic damage constitutive relationship for concrete material. Journal of Tongji University (Natural Science Edition), 2001, 29 (10): 1135-1141 (in Chinese))
    Mehta PK, Monteiro PJ. Concrete: Microstructure, Properties, and Materials. New York: McGraw-Hill, 2006
    曾莎洁. 混凝土随机损伤本构模型与试验研究. [博士论文]. 上海: 同济大学, 2012 (Zeng Shajie. Dynamic experimental research and stochastic damage constitutive model for concrete. [PhD Thesis]. Shanghai: Tongji University, 2012 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1226
  • HTML全文浏览量:  81
  • PDF下载量:  1477
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 修回日期:  2014-04-06
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回