EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动载下裂纹应力强度因子计算的数值流形元法

杨永涛 徐栋栋 郑宏

杨永涛, 徐栋栋, 郑宏. 动载下裂纹应力强度因子计算的数值流形元法[J]. 力学学报, 2014, 46(5): 730-738. doi: 10.6052/0459-1879-14-024
引用本文: 杨永涛, 徐栋栋, 郑宏. 动载下裂纹应力强度因子计算的数值流形元法[J]. 力学学报, 2014, 46(5): 730-738. doi: 10.6052/0459-1879-14-024
Yang Yongtao, Xu Dongdong, Zheng Hong. EVALUATION ON STRESS INTENSITY FACTOR OF CRACK UNDER DYNAMIC LOAD USING NUMERICAL MANIFOLD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738. doi: 10.6052/0459-1879-14-024
Citation: Yang Yongtao, Xu Dongdong, Zheng Hong. EVALUATION ON STRESS INTENSITY FACTOR OF CRACK UNDER DYNAMIC LOAD USING NUMERICAL MANIFOLD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738. doi: 10.6052/0459-1879-14-024

动载下裂纹应力强度因子计算的数值流形元法

doi: 10.6052/0459-1879-14-024
基金项目: 国家自然科学基金项目(11172313)和973项目(2011CB01350,2014CB047100)资助.
详细信息
    作者简介:

    杨永涛,在读博士,主要研究方向:岩土力学数值方法.E-mail:scuhhc@126.com

  • 中图分类号: O346.1

EVALUATION ON STRESS INTENSITY FACTOR OF CRACK UNDER DYNAMIC LOAD USING NUMERICAL MANIFOLD METHOD

Funds: The project was supported by the National Natural Science Foundation of China (11172313) and 973 program (2011CB01350, 2014CB047100).
  • 摘要: 相较于传统有限元,数值流形方法(numerical manifold method, NMM) 的一个显著优点是在处理裂纹问题时网格无需与裂纹重合,这就方便了岩体破坏过程的模拟. 基于包含裂尖增强函数的NMM,采用Newmark 隐式动力学算法进行时间积分,重点研究了动力载荷条件下裂纹动态应力强度因子(dynamic stress intensity factor,DSIF) 的求解方法. 针对典型的线弹性动力裂纹问题,给出了NMM 的数值算例. 结果表明NMM 能够准确计算动载荷条件下裂纹的DSIF,并且具有较好的收敛性.

     

  • Liu P, Bui TQ, Zhang Ch. The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2d elastic solids. Computer Methods in Applied Mechanics and Engineering, 2012, 233: 68-80
    Freud LB. Dynamic Fracture Mechanics. London:Cambridge University Press, 1990
    Basu S, Narasimhan R. Finite element simulation of mode I dynamic, ductile fracture initiation. International Journal of Solids and Structure, 1996, 33(8): 1191-1207  
    Song JH, Wang HW, Belytschko T. A comparative study on finite element methods for dynamic fracture. Computational Mechanics, 2008, 42(2): 239-250  
    Belytschko T, Organ D, Gerlach C. Element-free galerkin methods for dynamic fracture in concrete. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3-4): 385-399
    Lu YY, Belytschko T, Tabbara M. Element-free galerkin method for wave-propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering, 1995, 126(1-2): 131-153  
    Belytschko T, Lu YY, Gu L. Element-free galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 1995, 32(17-18): 2547-2570
    Zhang Z, Hao SY, Liew KM, et al. The improved element-free galerkin method for two-dimensional elastodynamics problems. Engineering Analysis with Boundary Elements, 2013, 37(12): 1576-1584  
    Puso MA, Chen JS, Zywicz E, et al. Meshfree and finite element nodal integration methods. International Journal For Numerical Methods in Engineering, 2008, 74(3): 416-446  
    Sonia FM, Antonio H. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1257-1275
    Melenk JM, Babuska I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 289-314  
    Babuska I, Melenk JM. The partition of unity method. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758  3.0.CO;2-N">
    Budyn E, Zi G, Moes N. A method for multiple crack growth in brittle materials without remeshing. International Journal for Numerical Methods in Engineering, 2004, 61(10): 1741-1770  
    Azadi H, Khoei AR. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing. International Journal for Numerical Methods in Engineering, 2011, 85(8): 1017-1048  
    Elguedj T, Gravouil A, Maigre H. An explicit dynamics extended finite element method. part 1: mass lumping for arbitrary enrichment functions. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2297-2317
    Gravouil A, Elguedj T, Maigre H. An explicit dynamics extended finite element method. part 2: element-by-element stable-explicit/explicit dynamic scheme. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2318-2328
    Zamani A, Eslami MR. Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. International Journal of Solids and Structures, 2010, 47(10): 1392-1404 e18 Nistor I, Pantale O, Caperaa S. Numerical implementation of the extended finite element method for dynamic crack analysis. Advances in Engineering Software, 2008, 39(7): 573-587  
    [19] Zhang SR, Wang GH, Yu XR. Seismic cracking analysis of concrete gravity dams with initial cracks using the extended finite element method. Engineering Structures, 2013, 56: 528-543  
    [20] Rabczuk T, Song JH, Belytschko T. Simulation of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6):730-741  
    [21] Zheng H, Xu DD. New strategies for some issues of numerical manifold method in simulation of crack propagation. International Journal for Numerical Methods in Engineering, In press
    [22] Fries TP, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010, 84: 253-304
    [23] Shi GH. Manifold method of material analysis. In: Trans 9th Army Conf on Applied Mathematics and Computing. Minneapolis, Minnesota, 1991. 57-76
    [24] Shi GH. Modeling rock joints and blocks by manifold method. In: Proceedings of the 33rd US Rock Mechanics Symposium. New Mexico, San Ta Fe, 1992. 639-48
    [25] Xu DD, Zheng H. Mesh independence test of numerical manifold method in treating strong singularity. In: Proceedings of 11th International Conference on Analysis of Discontinuous Deformation. Japan, Fukuoka, 2013. 91-96
    [26] Zhang HH, Li LX, An XM, et al. Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Engineering Analysis with Boundary Elements, 2010, 34 (1): 41-50  
    [27] Zhang HH, Zhang SQ. Extract of stress intensity factors on honeycomb elements by the numerical manifold method. Finite Elements in Analysis and Design, 2012, 59: 55-65  
    [28] Ma GW, An XM, Zhang HH, et al. Modeling complex crack problems using the numerical manifold method. International Journal of Fracture, 2009, 156: 21-35  
    [29] Wu ZJ, Wong LNY. Elastic-plastic cracking analysis for brittle-ductile rocks using manifold method. International journal of fracture, 2013, 180: 71-91  
    [30] Wu ZJ, Wong LNY. Frictional crack initiation and propagation analysis using the numerical manifold method. Computers and Geotechnics, 2012, 39: 38-53  
    [31] 刘红岩,秦四清,李厚恩等. 岩石冲击破坏的数值流形方法模拟. 岩土工程学报, 2007, 29(4): 587-593 (Liu Hongyan, Qin Siqing, Li Houen, et al. Simulation of impact failure of rock by numerical manifold method. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 587-593 (in Chinese))
    [32] 张国新,金峰,王光纶. 用基于流形元的子域奇异边界元法模拟重力坝的地震破坏. 工程力学, 2001, 18(4): 18-27 (Zhang Guoxin, Jin Feng, Wang Guanglun. Seismic failure simulation of gravity dam by manifold-based singular boundary element method. Engineering Mechanics, 2001, 18(4): 18-27 (in Chinese))
    [33] 王自强,陈少华. 高等断裂力学. 北京:科学出版社,2009 (Wang Ziqiang, Chen Shaohua. Advanced Fracture Mechanics. Beijing: Science Press, 2009 (in Chinese))
    [34] 李树忱,程玉民,考虑裂纹尖端场的数值流形方法. 土木工程学报, 2005,38(7) :96-101 (Li Shuchen, Cheng Yumin. Numerical manifold method for crack tip fields. China Civil Engineering Journal, 2005, 38(7): 96-101 (in Chinese)).
    [35] Zheng H, Liu ZJ, Ge XR. Numerical manifold space of Hermitian form and application to Kirchhoff's thin plate problems. International Journal for Numerical Methods in Engineering, 2013, 95: 721-739  
    [36] 姜清辉,周创兵,漆祖芳. 基于Newmark积分方案的DDA方法. 岩石力学与工程学报, 2009,28(1):2778-2783 (Jiang Qinghui, Zhou Chuangbing, Qi Zufang. Discontinuous deformation analysis method based on Newmark integration algorithm. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 2778-2783 (in Chinese))
    [37] Menouillard T, Belytschko T. Dynamic fracture with meshfree enriched XFEM. Acta Mechanica, 2010, 213(1-2): 53-69.  
    [38] 江守燕,杜成斌. 动载下缝端应力强度因子计算的扩展有限元法. 应用数学和力学,2013,34(6):586-597 (Jiang Shouyan, Du Chengbin. Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods. Applied Mathematics and Mechanics, 2013, 34(6):586-597 (in Chinese))
    [39] 王勖成. 有限单元法. 北京:清华大学出版社,2003 (Wang Xucheng. Finite Element Method. Beijing: Tsinghua University Press, 2003 (in Chinese))
    [40] Belytschko T, Chen H. Singular enrichment finite element method for elastodynamic crack propagation. International Journal of Computational Methods, 2004, 1: 1-15  
  • 加载中
计量
  • 文章访问数:  1078
  • HTML全文浏览量:  59
  • PDF下载量:  1310
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-20
  • 修回日期:  2014-05-13
  • 刊出日期:  2014-09-18

目录

    /

    返回文章
    返回