EI、Scopus 收录

 引用本文: 杨永涛, 徐栋栋, 郑宏. 动载下裂纹应力强度因子计算的数值流形元法[J]. 力学学报, 2014, 46(5): 730-738.
Yang Yongtao, Xu Dongdong, Zheng Hong. EVALUATION ON STRESS INTENSITY FACTOR OF CRACK UNDER DYNAMIC LOAD USING NUMERICAL MANIFOLD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738.
 Citation: Yang Yongtao, Xu Dongdong, Zheng Hong. EVALUATION ON STRESS INTENSITY FACTOR OF CRACK UNDER DYNAMIC LOAD USING NUMERICAL MANIFOLD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738.

## EVALUATION ON STRESS INTENSITY FACTOR OF CRACK UNDER DYNAMIC LOAD USING NUMERICAL MANIFOLD METHOD

• 摘要: 相较于传统有限元，数值流形方法（numerical manifold method， NMM） 的一个显著优点是在处理裂纹问题时网格无需与裂纹重合，这就方便了岩体破坏过程的模拟. 基于包含裂尖增强函数的NMM，采用Newmark 隐式动力学算法进行时间积分，重点研究了动力载荷条件下裂纹动态应力强度因子（dynamic stress intensity factor，DSIF） 的求解方法. 针对典型的线弹性动力裂纹问题，给出了NMM 的数值算例. 结果表明NMM 能够准确计算动载荷条件下裂纹的DSIF，并且具有较好的收敛性.

Abstract: Compared to the traditional finite element method (FEM), one significant advantage for numerical manifold method (NMM) is not necessary to force the mesh to match the cracks, facilitating the simulation of failure in rock mass. Based on NMM containing enriched functions of crack tip, the Newmark implicit algorithm was used for time integration. Besides, emphasis was placed on the solution method of dynamic stress intensity factor (DSIF) of crack under dynamic loading condition. Numerical examples with NMM for typical elastic dynamic crack problems are presented. The results show that the NMM can not only accurately evaluate DSIF under dynamic loading condition, but also have very good convergence property to the theoretical solution.

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈