EI、Scopus 收录
中文核心期刊

基于NMM的EFG方法及其裂纹扩展模拟

刘丰, 郑宏, 李春光

刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582-590. DOI: 10.6052/0459-1879-13-430
引用本文: 刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582-590. DOI: 10.6052/0459-1879-13-430
Liu Feng, Zheng Hong, Li Chunguang. THE NMM-BASED EFG METHOD AND SIMULATION OF CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582-590. DOI: 10.6052/0459-1879-13-430
Citation: Liu Feng, Zheng Hong, Li Chunguang. THE NMM-BASED EFG METHOD AND SIMULATION OF CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582-590. DOI: 10.6052/0459-1879-13-430
刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582-590. CSTR: 32045.14.0459-1879-13-430
引用本文: 刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582-590. CSTR: 32045.14.0459-1879-13-430
Liu Feng, Zheng Hong, Li Chunguang. THE NMM-BASED EFG METHOD AND SIMULATION OF CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582-590. CSTR: 32045.14.0459-1879-13-430
Citation: Liu Feng, Zheng Hong, Li Chunguang. THE NMM-BASED EFG METHOD AND SIMULATION OF CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582-590. CSTR: 32045.14.0459-1879-13-430

基于NMM的EFG方法及其裂纹扩展模拟

基金项目: 国家自然科学基金(11172313)和国家重点基础研究发展计划(2011CB01350,2014CB047100)资助项目.
详细信息
    作者简介:

    刘丰,男,在读博士,主要研究方向:计算岩石力学.E-mail:liuf_hb@sina.com

  • 中图分类号: O34

THE NMM-BASED EFG METHOD AND SIMULATION OF CRACK PROPAGATION

Funds: The project was supported by the National Natural Science Foundation of China (11172313) and the Mational Basic Research Program (2011CB01350, 2014CB047100).
  • 摘要: 数值流形方法(numerucal manifold method,NMM)通过引入数学覆盖和物理覆盖两套系统来统一处理连续和非连续问题. 通过用移动最小二乘插值(moving least squares interpolation,MLS)中的节点影响域构造数学覆盖,得到了基于数值流形方法的无网格伽辽金法(element free Galerkin,EFG). 该方法在保证前处理简单的同时,又能方便处理如裂纹等不连续问题. 建立了适用于小变形和大变形的裂纹扩展计算格式,并通过对曲折裂纹(kinked crack)的处理,在不加密的情况下实现了任意小步长的裂纹扩展,大大提高了在固定网格中模拟裂纹扩展的实用性. 大小变形的结果对比表明,按照不考虑构型变化的小变形计算,结果可能偏于危险.
    Abstract: In order to solve continuum and discontinuous problems in a uniform way, the numerical manifold method (NMM) introduces two cover systems, i.e., the mathematical cover (MC) and the physical cover (PC). By constructing the MC with the node influence domains in moving least squares interpolation (MLS) as the mathematical cover, the Element Free Galerkin method in the setting of NMM is proposed, named NMM-EFG. The NMM-EFG can easily deal with continuum and discontinuous problems while the pre-processing becomes very easy. A scheme for simulating crack propagation under the small deformation and the large deformation conditions is developed. By the treatment of kinked cracks, the crack can grow at arbitrarily small step without mesh refinement. Compared with results from large deformation, the results from small deformation might be prone to unsafe evaluation.
  • Bouchard PO, Bay F, Chastel Y. Numerical modelling of crack propagation: Automatic remeshing and comparison of different criteria. Computer Methods in Applied Mechanics and Engineering, 2003, 192(35-36): 3887-3908
    Bouchard PO, Bay F, Chastel Y, et al. Crack propagation modelling using an advanced remeshing technique. Computer Methods in Applied Mechanics and Engineering, 2000, 189(3): 723-742
    Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150  3.0.CO;2-J" target=_blank>
    Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620.  3.0.CO;2-S" target=_blank>
    Fleming M, Chu Y, Moran B, et al. Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 1997, 40(8):1483-1504.  3.0.CO;2-6" target=_blank>
    Ventura G, Xu J, Belytschko T. A vector level set method and new discontinuity approximations for crack growth by EFG. International Journal for Numerical Methods in Engineering, 2002, 54(6): 923-944.
    蔡永昌,朱合华. 裂纹扩展过程模拟的无网格 MSLS 方法. 工程力学, 2010, (7): 21-26 (Cai Yongchang, Zhu Hehua. Simulation of crack growth by the MSLS method. Engineering Mechanics, 2010, (7): 21-26(in Chiniese))
    Chiou YJ, Lee YM, Tsay RJ. Mixed mode fracture propagation by manifold method. International Journal of Fracture, 2002, 114(4): 327-347
    Ma GW, An XM, Zhang HH, et al. Modeling complex crack problems using the numerical manifold method. International Journal of Fracture, 2009, 156(1): 21-35
    Tsay RJ, Chiou YJ, Chuang WL. Crack growth prediction by manifold method. Journal of Engineering Mechanics, 1999, 125(8): 884-890
    Zhang HH, Li LX, An XM, et al. Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Engineering Analysis with Boundary Elements, 2010, 34(1): 41-50
    王水林,葛修润. 流形元方法在模拟裂纹扩展中的应用. 岩石力学与工程学报, 1997, 16(5): 405-410 (Wang Shuilin, Ge Xiuren. Application of manifold method insimulating crack propagation. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(5): 405-410(in Chiniese))
    Melenk J M, Babuška I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 289-314
    An XM, Li LX, Ma GW, et al. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes. Computer Methods in Applied Mechanics and Engineering, 2011, 200(5-8): 665-674
    栾茂田, 张大林, 杨庆等. 有限覆盖无单元法在裂纹扩展数值分析问题中的应用. 岩土工程学报, 2003, 25(5): 527-531 (Luan Maotian, Zhang Dalin, Yang Qing, et al. Applications of the finite-cover elementfree method in numerical analyses of crack expansion. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 527-531(in Chiniese))
    李树忱,程玉民. 基于单位分解法的无网格数值流形方法. 力学学报, 2004, 36(4): 496-500 (Li Shuchen, Chen Yumin. Meshless numerical manifold method based on unit partition. Acta Mechanica Sinica, 2004, 36(4): 496-500(in Chiniese))
    樊成,栾茂田. 有限覆盖 Kriging 插值无网格法在裂纹扩展中的应用. 岩石力学与工程学报, 2008, 27(4): 743-748 (Fan Cheng, Luan Maotian. Kriging interpolation meshless method based on finite Covers and its application to crack propagation. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 743-748(in Chiniese))
    Belytschko T, Moës N, Usui S, et al. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 2001, 50(4): 993-1013  3.0.CO;2-M" target=_blank>
    Pant M, Singh I, Mishra B. A novel enrichment criterion for modeling kinked cracks using element free Galerkin method. International Journal of Mechanical Sciences, 2013, 68: 140-149
    Zheng H, Xu D. New strategies for some issues of numerical manifold method in simulation of crack propagation. International Journal for Numerical Methods in Engineering, 2014, 97(13): 986-1010
    Shi GH. Manifold method of material analysis. Transaction of the 9th Army conference on applied mathematics and computing. Minneapolis, Minnesota, USA. 1991. 51-76
    曹文贵,速宝玉. 流形元覆盖系统自动形成方法之研究. 岩土工程学报, 2001, 23(2): 187-190 (Cao Wengui, Su Baoyu. A study on techniques of automatically forming of cover system of numerical manifold method. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 187-190 (in Chiniese))
    姜清辉, 邓书申, 周创兵. 有自由面渗流分析的三维数值流形方法. 岩土力学, 2011, 32(3): 879-884 (Jiang Qinghui, Deng Shushen, Zhou Chuangbing. Three-dimensional numerical manifold method for seepage problems with free surfaces. Rock and Soil Mechanics, 2011, 32(3): 879-884(in Chiniese))
    姜清辉, 周创兵. 四面体有限单元覆盖的三维数值流形方法. 岩石力学与工程学报, 2005, 24(24): 4455-4460 (Jiang Qinghui, Zhou Chuangbing. Three-dimensional numerical manifold method with tetrahedron finite element covers. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4455-4460(in Chiniese))
    Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256
    Liu F, Zheng H, Li CG. Simple but efficient method for integrating 1/r singularities. Applied Mechanics and Materials, 2014, 444: 615-620
    Arrea M, Ingraffea AR. Mixed-mode crack propagation in mortar and concrete. Report No. 81-13: Department of Structural Engineering, Cornell University, New York, USA. 1982
    Rao B, Rahman S. An efficient meshless method for fracture analysis of cracks. Computational Mechanics, 2000, 26(4): 398-408
    Yang ZJ, Deeks AJ. Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method. Engineering Fracture Mechanics, 2007, 74(6): 2547-2573
    Duflot M, Nguyen-Dang H. A meshless method with enriched weight functions for fatigue crack growth. International Journal for Numerical Methods in Engineering, 2004, 59(4): 1945-1961
计量
  • 文章访问数:  1387
  • HTML全文浏览量:  149
  • PDF下载量:  1002
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-26
  • 修回日期:  2014-02-28
  • 刊出日期:  2014-07-17

目录

    /

    返回文章
    返回