EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含铰接杆系结构几何非线性分析子结构方法

王刚 齐朝晖 汪菁

王刚, 齐朝晖, 汪菁. 含铰接杆系结构几何非线性分析子结构方法[J]. 力学学报, 2014, 46(2): 273-283. doi: 10.6052/0459-1879-13-345
引用本文: 王刚, 齐朝晖, 汪菁. 含铰接杆系结构几何非线性分析子结构方法[J]. 力学学报, 2014, 46(2): 273-283. doi: 10.6052/0459-1879-13-345
Wang Gang, Qi Zhaohui, Wang Jing. SUBSTRUCTURE METHODS OF GEOMETRIC NONLINEAR ANALYSIS FOR MEMBER STRUCTURES WITH HINGED SUPPORTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 273-283. doi: 10.6052/0459-1879-13-345
Citation: Wang Gang, Qi Zhaohui, Wang Jing. SUBSTRUCTURE METHODS OF GEOMETRIC NONLINEAR ANALYSIS FOR MEMBER STRUCTURES WITH HINGED SUPPORTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 273-283. doi: 10.6052/0459-1879-13-345

含铰接杆系结构几何非线性分析子结构方法

doi: 10.6052/0459-1879-13-345
基金项目: 国家自然科学基金资助项目(11372057).
详细信息
    作者简介:

    齐朝晖,教授,主要研究方向:多体系统动力学、结构力学.E-mail:zhaohuiq@dlut.edu.cn

  • 中图分类号: O342;TH213.7

SUBSTRUCTURE METHODS OF GEOMETRIC NONLINEAR ANALYSIS FOR MEMBER STRUCTURES WITH HINGED SUPPORTS

Funds: The project was supported by the National Natural Science Foundation of China (11372057).
  • 摘要: 将细长杆系结构按长度方向划分为多个子结构,由于在子结构坐标系下的节点位移均是小位移,可以将子结构内部自由度凝聚到边界. 考虑到子结构端面在变形过程中保持为刚性截面,将端面节点自由度进一步凝聚到端面形心点,这样每一个子结构就减缩成形式上只有两个节点的广义梁单元,大大减缩了自由度. 大位移大转动是细长杆系结构产生几何非线性效应的一个重要原因,基于共旋坐标法,建立了随单元一起运动的随动坐标系,推导了子结构单元的节点力平衡方程及其切线刚度阵. 同时,考虑到工程机械中细长杆系结构含有相互铰接的刚体加强块,给出了非独立自由度节点力转换到独立参数下的广义节点力及其导数. 最后,通过履带式起重机的副臂工况算例,给出了其在不同载荷下的臂架结构位移,验证了方法的正确性.

     

  • Belytschko T, Liu WK, Moran B. 连续体和结构的非线性有限元. 庄茁译. 北京:清华大学出版社, 2002 (Belytschko T, Liu WK, Moran B. Nonlinear Finite Element for Continua and Structures. Zhuang Zhuo tran. Beijing: Tsinghua University Press, 2002 (in Chinese))
    吴庆雄, 陈宝春, 韦建刚. 三维杆系结构的几何非线性有限元分析. 工程力学, 2007, 12:19-24 (Wu Qingxiong, Chen Baochun, Wei Jiangang. A geometric nonlinear finite element analysis for 3D framed structures. Engineering Mechanics, 2007, 12: 19-24 (in Chinese))
    古雅琦, 王海龙, 杨怀宇. 一种大变形几何非线性Euler-Bernoulli梁单元. 工程力学, 2013, 6:11-15 (Gu Yaqi, Wan Hailong, Yang Huaiyu. A large deformation geometric nonlinear Euler-Bernoulli beam element. Engineering Mechanics, 2013, 6: 11-15 (in Chinese))
    Wempner G. Finite elements, finite rotations and small strains of flexible shells. International Journal of Solids and Structures, 1969, 5 (2): 117-153  
    Belytschko T, Hseih BJ. Non-linear transient finite element analysis with convected co-ordinates. International Journal for Numerical Methods in Engineering, 1973, 7 (3): 255-271  
    Crisfield MA, Moita GF. A unified co-rotational framework for solids, shells and beams. International Journal of Solids and Structures, 1996, 33 (20-22): 2969-2992
    Felippa CA, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 2285-2235  
    周凌远, 李乔. 基于UL法的CR列式三维梁单元计算方法. 西南交通大学学报, 2006, 41(6):690-695 (Zhou Lingyuan, Li Qiao. Updated Lagrangian Co-rotational formulation for geometrically nonlinear FE analysis of 3-D beam element. Journal of Southwest Jiaotong University, 2006, 41(6): 690-695 (in Chinese))
    Li ZX. A co-rotational formulation for 3D beam element using vectorial rotational variables. Computational Mechanics, 2007, 39: 309-322
    邓继华, 邵旭东, 邓潇潇. 四边形八节点共旋法平面单元的几何非线性分析. 工程力学, 2011, 7:6-12 (Deng Jihua, Shao Xudong, Deng Xiaoxiao. Geometrically nonlinear analysis using a quadrilateral 8-node co-rotational plane element. Engineering Mechanics, 2011, 7: 6-12 (in Chinese))
    Li ZX. A stabilized co-rotational curved quadrilateral composite shell element. International Journal for Numerical Methods in Engineering, 2011, 86 (8): 975-999  
    杨劲松, 夏品奇. 薄壳大转动、小应变几何非线性分析共旋有限元法.中国科学:技术科学, 2012, 11:1295-1304 (Yang Jingsong, Xia Pingqi. Finite element corotational formulation for geometric nonlinear analysis of thin shells with large rotation and small strain. Scientia Sinica Techologica, 2012, 11: 1295-1304 (in Chinese))
    李文雄, 马海涛, 陈太聪. 空间框架结构几何非线性分析方法的改进研究. 力学学报, 2013, 45(6):928-935 (Li Wenxiong, Ma Haitao, Chen Taichong. Improvements of geometrically nonlinear analysis algorithms for spatial frame structures. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45 (6): 928-935 (in Chinese))
    Argyris JH. An excursion into large rotations. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3): 85-155
  • 加载中
计量
  • 文章访问数:  1066
  • HTML全文浏览量:  71
  • PDF下载量:  1186
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-16
  • 修回日期:  2013-12-09
  • 刊出日期:  2014-03-18

目录

    /

    返回文章
    返回