EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强陶瓷基复合材料疲劳迟滞回线模型研究

李龙彪

李龙彪. 纤维增强陶瓷基复合材料疲劳迟滞回线模型研究[J]. 力学学报, 2014, 46(5): 710-729. doi: 10.6052/0459-1879-13-332
引用本文: 李龙彪. 纤维增强陶瓷基复合材料疲劳迟滞回线模型研究[J]. 力学学报, 2014, 46(5): 710-729. doi: 10.6052/0459-1879-13-332
Li Longbiao. INVESTIGATION ON FATIGUE HYSTERESIS LOOPS MODELS OF FIBRE-REINFORCED CERAMIC-MATRIX COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 710-729. doi: 10.6052/0459-1879-13-332
Citation: Li Longbiao. INVESTIGATION ON FATIGUE HYSTERESIS LOOPS MODELS OF FIBRE-REINFORCED CERAMIC-MATRIX COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 710-729. doi: 10.6052/0459-1879-13-332

纤维增强陶瓷基复合材料疲劳迟滞回线模型研究

doi: 10.6052/0459-1879-13-332
基金项目: 中国博士后基金(2012M511274)和江苏省青年科学基金(BK20140813)资助项目.
详细信息
    作者简介:

    李龙彪,博士后,讲师,主要研究方向:民用航空发动机结构强度、可靠性与适航.E-mail:llb451@nuaa.edu.cn

  • 中图分类号: TB332

INVESTIGATION ON FATIGUE HYSTERESIS LOOPS MODELS OF FIBRE-REINFORCED CERAMIC-MATRIX COMPOSITES

Funds: The project was supported by the China Postdoc Science Foundation (2012M511274) and Jiangsu Province Science Foundation for Youths (BK20140813).
  • 摘要: 纤维增强陶瓷基复合材料初始加载到疲劳峰值应力时, 基体出现裂纹, 纤维/基体界面发生脱粘. 在疲劳载荷作用下, 纤维相对基体在界面脱粘区往复滑移使得陶瓷基复合材料出现疲劳迟滞现象. 建立了纤维陶瓷基复合材料疲劳迟滞回线细观力学模型, 采用断裂力学方法确定了初始加载纤维/基体界面脱粘长度、卸载界面反向滑移长度与重新加载新界面滑移长度, 分析了4种不同界面滑移情况的疲劳迟滞回线. 假设正交铺设与编织陶瓷基复合材料疲劳迟滞回线主要受0°铺层、轴向纱线内纤维/基体界面滑移的影响, 预测了单向、正交铺设与编织陶瓷基复合材料在不同峰值应力与不同循环的疲劳迟滞回线, 与试验结果吻合.

     

  • Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2): 155-170  
    Schmidt S, Beyer S, Knabe H, et al. Advanced ceramic matrix composite materials for current and future propulsion system applications. Acta Astronautica, 2004, 55(3): 409-420
    DiCarlo JA, Roode M. Ceramic composite development for gas turbine hot section components. in: Proceeding of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air, May 8-11, 2006, Barcelona Spain.
    Stephen T. General electric primes CMC for turbine blades. Flight International, 2010. http://www.flightglobal.com/news/articles/general-electric-primes-cmc-for-turbine-blades-349834/
    Zhang LT, Cheng LF, Luan XG, et al. Environmental performance testing system for thermostructure materials appleid in aeroengines. Key Engineering Materials, 2006, 313: 183-190  
    Evans AG, Zok FW, McMeeking RM. Fatigue of ceramic matrix composites. Acta Metall Mater, 1995 43(3): 859-875  
    Zhu S, Mizuno M, Kagawa Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review. Composites Science and Technology, 1999, 59(6): 833-851  
    Fantozzi G, Reynaud P, Rouby D. Thermomechanical behavior of long fibers ceramc-ceramic composites. Silcates Industriels, 2001, 66(9-10): 109-119
    Mall S, Engesser JM. Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Composites Science and Technology, 2006, 66(7-8): 863-874
    杜双明, 乔生儒, 纪纲昌, 等. 3D-C/SiC复合材料在室温和1300°C的拉
    拉疲劳行为, 材料工程, 2002, 9: 22-25 (Du Shuangming, Qiao Shengru, Ji Gangchang, Han D. Tension-tension fatigue behavior of 3d-C/SiC composite at room temperature and 1300°C. Materials Engineering, 2002, 9: 22-25 (in Chinese))
    [11] 杜双明, 乔生儒, 3D-C/SiC复合材料在1500°C的拉-拉疲劳行为, 材料工程, 2011, 5: 34-37 (Du Shuangming, Qiao Shengru. Tension-tension fatigue beahvior of 3D-C/SiC composite at 1500°C. Materials Engineering, 2011, 5: 34-37 (in Chinese))
    [12] 程起有, 童小燕, 陈刘定, 等, 平纹编织碳纤维增韧碳化硅复合材料的力学性能及损伤演化, 硅酸盐学报, 2010, 38 (5) : 931-937 (Cheng Qiyou, Tong Xiaoyan, Chen Liuding, et al. Mechanical property and damage behavior of silicon carbide composites toughened carbon fibers plain-woven, Journal of the Chinese Ceramic Society, 2010, 38(5): 931-937 (in Chinese))
    [13] 刘持栋, 成来飞, 梅辉, 等, 2D C/SiC复合材料在1300°C水氧环境下的疲劳行为研究, 无机材料学报, 2008, 23 (4) : 729-733 (Liu Chidong, Cheng Laifei, Mei Hui, et al. Fatigue behavior of 2D C/SiC composites in water-vapor containing environment at 1300°C, Journal of Inorganic Materials, 2008, 23(4): 729-733 (in Chinese))
    [14] Evans AG, Design and life prediction issues for high-temperature engineering ceramics and their composites. Acta Mater, 1997, 45(1): 23-40
    [15] Rouby D, Reynaud P. Fatigue behavior related to interface modification during load cycling in ceramic-matrix fibre composites. Composites Science and Technology, 1993, 48(1-4): 109-118  
    [16] McNulty JC, Zok FW. Low cycle fatigue of Nicalon-fiber-reinforced ceramic composites. Composites Science and Technology, 1999, 59(10): 1597-1607  
    [17] Reynaud P. Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Composites Science and Technology, 1996, 56(7): 809-814  
    [18] Marshall DB, Evans AG, Failure mechanisms in ceramic-fiber/ceramic-matrix composites. Journal of the American Ceramic Society, 1985, 68(5): 225-231
    [19] Holmes JW, Cho CD. Experimental observation of frictional heating in fiber-reinforced ceramics. Journal of the American Ceramic Society, 1992, 75(4): 929-938  
    [20] Fantozzi G, Reynaud P. Mechanical hysteresis in ceramic matrix composites. Materials Science and Engingeering, Part A, 2009, 521-522: 18-23
    [21] Kotil T, Holmes JW, Comninou M. Origin of hysteresis observed during fatigue of ceramic-matrix composites. Journal of the American Ceramic Society, 1990, 73(7): 1879-83  
    [22] Cho CD, Holmes JW, Barber JR, Estimate of interfacial shear in ceramic composites from frictional heating measurements. Journal of the American Ceramic Society, 1991, 74(11): 2802-2808
    [23] Pryce AW, Smith PA. Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading. Acta metall mater, 1993, 41(4): 1269-1281  
    [24] Ahn BK, Curtin WA. Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites. Journal of the Mechanics Physics and Solids, 1997, 45(2): 177-209  
    [25] Solti J P, Mall S, Robertson DD, Modeling damage in unidirectional ceramic-matrix composites. Composites Science and Technology, 1995, 54(1): 55-66
    [26] Solti JP, Mall S, Robertson DD. Modeling of fatigue in cross-ply ceramic matrix composites. Journal of Composite Materials, 1997, 31(19): 1921-1943.  
    [27] Vagaggini E, Domergue JM, Evans AG, Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I, theory. Journal of the American Ceramic Society, 1995, 78(10): 2709-20
    [28] Hutchison JW, Jensen HM. Models of fiber debonding and pullout in brittle composites with friction. Mechanics of Materials, 1990, 9(2): 139-163  
    [29] Keith WP, Kedward KT The stress-strain behavior of a porous unidirectional ceramic matrix composite. Composites, 1995, 26(3): 163-174
    [30] 李龙彪, 宋迎东, 孙志刚, 界面脱粘对陶瓷基复合材料疲劳迟滞回线的影响, 固体力学学报, 2009, 30(1): 8-14 (Li Longbiao, Song Yingdong, Sun Zhigang. Influence of interface de-bonding on the fatigue hysteresis loops of ceramic matrix composites. Chinese Journal of Solid Mechanics, 2009, 30(1): 8-14 (in Chinese))
    [31] 李龙彪, 宋迎东, 孙志刚, 等. 纤维泊松收缩对陶瓷基复合材料疲劳迟滞回线的影响, 南京航空航天大学学报, 2009, 41(2): 181-186 (Li Longbiao, Song Yingdong, Sun Zhigang, et al. Effect of fiber Poisson contraction on fatigue hysteresis loops of ceramic matrix composites. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(2): 181-186 (in Chinese))
    [32] Li LB, Song YD. Effect of fiber failure on quasi-static unloading/reloading hysteresis loops of ceramic matrix composites. Transactions of Nanjing Univeristy of Aeronautics & Astronautics, 2011, 28(1): 94-102
    [33] Budiansky B, Hutchinson JW, Evans AG. Matrix fracture in fiber-reinforced ceramics. Journal of the Mechanics Physics and Solids, 1986, 34(2): 167-189  
    [34] Gao Y, Mai Y, Cotterell B. Fracture of fiber-reinforced materials. Journal of Applied Mathematics and Physics, 1988, 39(4): 550-572  
    [35] Holmes JW, Cho CD. Experimental observation of frictional heating in fiber-reinforced ceramics. Journal of American Ceramic Society, 1992, 75(4): 929-938  
    [36] Domergue JM, Vagaggini E, Evans AG. Relationship between hysteresis measurements and the constituent properties of ceramic matrix composites: II, experimental studies on unidirectional materials. Journal of the American Ceramic Society, 1995, 78(10): 2721-2731  
    [37] Pryce AW, Smith PA. Matrix cracking in crossply ceramic matrix composites under quasi-static and cyclic loading. Acta Metall Mater, 1994, 42(3): 861-870  
    [38] Opalski FA, Mall S. Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composites. Journal of the Reinforced Plastics and Composites, 1994, 13(5): 420-438  
    [39] Kuo WS, Chou TW. Multiple cracking of unidirectional and cross-ply ceramic matrix composites. Journal of the American Ceramic Society, 1995, 78(3): 745-55.  
    [40] Takeda N, Kiriyama M. Matrix crack evolution in SiC fiber/glass matrix cross-ply laminates. Composites Part A, 1999, 30(4): 593-597  
    [41] Morscher GN, Singh M, Kiser JD, et al. Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC matrix. Composites Science and Technology, 2007, 67(6): 1009-1017  
    [42] 梅辉, 成来飞, 张立同等, 2维C/SiC复合材料拉伸损伤演变过程和微观结构特征, 硅酸盐学报, 2007, 35(2): 137-143 (Mei Hui, Cheng Laifei, Zhang Litong, et al. Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading. Journal of the Chinese Ceramic Society, 2007, 35(2): 137-143 (in Chinese))
    [43] Wang YQ, Zhang LT, Cheng LF, et al. Characterization of tensile behavior of a two-dimensional woven carbon/silicon carbide composite fabricated by chemical vapor infiltration. Materials Science and Engineering, Part A, 2008, 497(1-2): 295-300  
    [44] Wang YQ, Zhang LT, Cheng LF, et al. Tensile performance and damage evolution of a 2.5-D C/SiC composite characterized by acoustic emission. Applied Composite Materials, 2008, 15(4-6): 183-188
    [45] 李宏, 2.5维碳/碳化硅复合材料的热物理及力学性能. [硕士论文].西安: 西北工业大学, 2007 (Li Hong. Thermophysical and mechanical properties of 2.5d C/SiC composites. [Master Thesis]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese))
    [46] He M, Hutchinson J. Kinking of a crack out of an interface. Journal of Applied Mechanics, 1989, 56(2): 270-8  
    [47] Mei H. Measurement and calculation of thermal residual stress in fiber reinforced ceramic matrix composites. Composites Science and Technology, 2008, 68(15-16): 3285-92
    [48] Beyerle DS, Spearing SM, Evans AG. Damage mechanisms and mechanical properties of a laminated 0/90 ceramic/matrix composite. Journal of the American Ceramic Society, 1992, 75(12): 3321-30  
    [49] Chawla N, Kerr M. Monotonic and cyclic fatigue behavior of high-performance ceramic fibers. Journal of the American Ceramic Society, 2005, 88(1): 101-108
    [50] 周元鑫, 江大志, 夏源明. 碳纤维静、动态加载下拉伸力学性能的试验研究, 材料科学与工艺, 2000, 8(1): 12-15 (Zhou Yuanxin, Jiang Dazhi, Xia Yuanming. Static and dynamic tensile behavior of carbon fiber. Material Science & Technology, 2000, 8(1): 12-15 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1034
  • HTML全文浏览量:  74
  • PDF下载量:  1426
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-09
  • 修回日期:  2014-05-16
  • 刊出日期:  2014-09-18

目录

    /

    返回文章
    返回